New in Wolfram
Mathematica
8: New and Improved Core Algorithms
◄
previous

next
►
Core Algorithms
Solve HighDegree Real Polynomial Equations Numerically
This approximates real solutions of a sparse polynomial equation of degree one million.
In[1]:=
X
f = x^1000000  E x^777777 + \[Pi] x^123456  E^\[Pi] x^33333 + \[Pi]^E x^9876  E^E^\[Pi] x^545 + E^\[Pi]^E x^99  E^\[Pi]^\[Pi] x^2  \[Pi]^\[Pi]^\[Pi]; rts = x /. NSolve[f == 0, x, Reals, WorkingPrecision > 500];
In[2]:=
X
Grid[{{TraditionalForm[f == 0], SpanFromLeft}, rts}, Frame > All, Background > {None, {{LightYellow, LightBlue}}}]
Out[2]=