New in Wolfram
Mathematica
8: Parametric Probability Distributions
◄
previous
|
next
►
Core Algorithms
Univariate Continuous Distributions
Univariate continuous parametric distributions in
Mathematica
8.
In[1]:=
X
dists = { ArcSinDistribution[{0, 3}], BatesDistribution[4], BeckmannDistribution[1, -2, 2, 3, .3], BeniniDistribution[3, 40, 4], BenktanderGibratDistribution[2, 2], BenktanderWeibullDistribution[0.5, 0.7], BetaDistribution[2, 3], BetaPrimeDistribution[4, 2, 3, 3], BirnbaumSaundersDistribution[1/2, 3], CauchyDistribution[0, 1], ChiDistribution[4], ChiSquareDistribution[6], DagumDistribution[2, 2, 3], DavisDistribution[3, 2.5, 1], ErlangDistribution[5, 1/2], ExpGammaDistribution[1, 2, 1], ExponentialDistribution[2], ExponentialPowerDistribution[1/2, 1, 2], ExtremeValueDistribution[1, 2], FisherZDistribution[1.5, 3], FRatioDistribution[10, 5], FrechetDistribution[2, 1.5], GammaDistribution[4, 2, 1, 0], GompertzMakehamDistribution[2, 1, 0.1, 2], GumbelDistribution[2, 3], HalfNormalDistribution[1], HotellingTSquareDistribution[10, 20], HoytDistribution[.2, .5], HyperbolicDistribution[-2, 2, 1.5, 3, 1], InverseChiSquareDistribution[5, .5], InverseGammaDistribution[2, 2, 1.4, 1], InverseGaussianDistribution[2, 3, 1], JohnsonDistribution["SB", 1, 2, 1.1, 1.5], JohnsonDistribution["SL", 1, 2, 1.1, 1.5], JohnsonDistribution["SN", 1, 2, 1.1, 1.5], JohnsonDistribution["SU", 3, 2, 1.1, 1.5], KDistribution[15, 1], KumaraswamyDistribution[2, 3/4], LandauDistribution[0.5, 1], LaplaceDistribution[2, 0.5], LevyDistribution[0, 4], LindleyDistribution[0.6], LogGammaDistribution[2, 0.5, 1], LogisticDistribution[2, 1], LogLogisticDistribution[5, 1], LogNormalDistribution[1, 1/2], MaxStableDistribution[-1, 2, .5], MaxwellDistribution[1.5], MinStableDistribution[1, 2, .5], MoyalDistribution[1, 1], NakagamiDistribution[3/2, 3], NoncentralBetaDistribution[2, 3, 10], NoncentralChiSquareDistribution[6, 7], NoncentralFRatioDistribution[10, 5, 2, 1], NoncentralStudentTDistribution[7, 2], NormalDistribution[0, 1], ParetoDistribution[3, 2, 3/4, 1], PearsonDistribution[75, -85, 37, 26, 58], PERTDistribution[{-2, 3}, 1, 1], PowerDistribution[1, 2.5], RayleighDistribution[1], RiceDistribution[1, 2, 3], SechDistribution[3, 1], SinghMaddalaDistribution[2, 5, 3], SkewNormalDistribution[0, 2, 0.5], StableDistribution[0, 1, 1/2, 0, 2], StableDistribution[1, 1.3, 1, 0, 2], StudentTDistribution[1, 2, 7], SuzukiDistribution[1/2, 1], TriangularDistribution[{0, 1}, 1/2], TukeyLambdaDistribution[0.4, 1, 0.5], UniformDistribution[{0, 1}], UniformSumDistribution[4, {0, 1}], VonMisesDistribution[0, 2], WakebyDistribution[5, 3, .1, 1/2, 0], WeibullDistribution[2, 2], WignerSemicircleDistribution[0, 2]};
In[2]:=
X
plots = ParallelTable[ Plot[PDF[\[ScriptCapitalD], x], {x, Quantile[\[ScriptCapitalD], 0.05], Min[50, Quantile[\[ScriptCapitalD], 0.95]]}, PlotRange -> All, Filling -> Axis, Exclusions -> None, ImageSize -> 150, PlotLabel -> StringReplace[ToString[Head[\[ScriptCapitalD]]], "Distribution" -> ""], Frame -> True, FrameTicks -> None, Axes -> None, AxesOrigin -> {Quantile[\[ScriptCapitalD], 0.05], 0}, FillingStyle -> RandomChoice[ColorData[45, "ColorList"]]], {\[ScriptCapitalD], dists}];
In[3]:=
X
composite = Table[Hyperlink[ Tooltip[Show[plots[[i]], ImageSize -> 80], Show[plots[[i]], ImageSize -> Large, PlotLabel -> dists[[i]], FrameTicks -> Automatic]], "paclet:ref/" <> ToString[Head[dists[[i]]]]], {i, Length[dists]}];
In[4]:=
X
Grid[Partition[Append[composite, Null], 6]]
Out[4]=