WOLFRAM

gives the {x,y} Cartesian coordinates corresponding to the polar coordinates {r,θ}.

FromPolarCoordinates[{r,θ1,,θn-2,ϕ}]

gives the coordinates corresponding to the hyperspherical coordinates {r,θ1,,θn-2,ϕ}

Details

Examples

open allclose all

Basic Examples  (3)Summary of the most common use cases

Convert a general point in polar coordinates:

Out[1]=1

A specific point:

Out[1]=1

A conversion in dimension 3:

Out[1]=1

Scope  (3)Survey of the scope of standard use cases

Convert several points:

Out[1]=1

A matrix of points:

Out[1]=1

Five-dimensional hyperspherical coordinates:

Out[1]=1

Properties & Relations  (6)Properties of the function, and connections to other functions

FromPolarCoordinates checks that inputs obey the normal restrictions of polar coordinates:

Out[1]=1

This point violates the condition on the angle :

Out[2]=2

Extract the symbolic transform from CoordinateTransformData to apply it to singular points:

Out[4]=4

FromPolarCoordinates preserves the shape of arrays:

Out[1]=1

This includes empty arrays:

Out[2]=2

FromPolarCoordinates[pt] is a special case of CoordinateTransform:

Out[1]=1
Out[2]=2

FromPolarCoordinates inverts ToPolarCoordinates:

Out[1]=1
Out[2]=2

FromPolarCoordinates[{x,y,z}] uses spherical coordinates about the axis:

Out[1]=1

FromSphericalCoordinates[{x,y,z}] uses spherical coordinates about the axis:

Out[2]=2

FromPolarCoordinates changes the coordinate values of points:

Out[1]=1

TransformedField changes the coordinate expressions for fields:

Out[2]=2
Wolfram Research (2015), FromPolarCoordinates, Wolfram Language function, https://reference.wolfram.com/language/ref/FromPolarCoordinates.html.
Wolfram Research (2015), FromPolarCoordinates, Wolfram Language function, https://reference.wolfram.com/language/ref/FromPolarCoordinates.html.

Text

Wolfram Research (2015), FromPolarCoordinates, Wolfram Language function, https://reference.wolfram.com/language/ref/FromPolarCoordinates.html.

Wolfram Research (2015), FromPolarCoordinates, Wolfram Language function, https://reference.wolfram.com/language/ref/FromPolarCoordinates.html.

CMS

Wolfram Language. 2015. "FromPolarCoordinates." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/FromPolarCoordinates.html.

Wolfram Language. 2015. "FromPolarCoordinates." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/FromPolarCoordinates.html.

APA

Wolfram Language. (2015). FromPolarCoordinates. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FromPolarCoordinates.html

Wolfram Language. (2015). FromPolarCoordinates. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FromPolarCoordinates.html

BibTeX

@misc{reference.wolfram_2025_frompolarcoordinates, author="Wolfram Research", title="{FromPolarCoordinates}", year="2015", howpublished="\url{https://reference.wolfram.com/language/ref/FromPolarCoordinates.html}", note=[Accessed: 15-July-2025 ]}

@misc{reference.wolfram_2025_frompolarcoordinates, author="Wolfram Research", title="{FromPolarCoordinates}", year="2015", howpublished="\url{https://reference.wolfram.com/language/ref/FromPolarCoordinates.html}", note=[Accessed: 15-July-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_frompolarcoordinates, organization={Wolfram Research}, title={FromPolarCoordinates}, year={2015}, url={https://reference.wolfram.com/language/ref/FromPolarCoordinates.html}, note=[Accessed: 15-July-2025 ]}

@online{reference.wolfram_2025_frompolarcoordinates, organization={Wolfram Research}, title={FromPolarCoordinates}, year={2015}, url={https://reference.wolfram.com/language/ref/FromPolarCoordinates.html}, note=[Accessed: 15-July-2025 ]}