Wolfram Language Fast Introduction for Math Students
Get Started »

Complex Analysis

The imaginary unit is represented as I:

In[1]:=
Click for copyable input
I^2
Out[1]=

Most operations automatically handle complex numbers:

In[2]:=
Click for copyable input
(1 + I) (2 - 3 I)
Out[2]=

Expand complex expressions:

In[1]:=
Click for copyable input
ComplexExpand[Sin[x + I y]]
Out[1]=

Convert expressions between exponential and trig forms:

In[2]:=
Click for copyable input
ExpToTrig[E^(I x)]
Out[2]=
In[3]:=
Click for copyable input
TrigToExp[%]
Out[3]=

Type ESCcoESC for the Conjugate symbol:

In[1]:=
Click for copyable input
(3 + 2 I)\[Conjugate]
Out[1]=

Extract the real and imaginary parts of an expression:

In[2]:=
Click for copyable input
ReIm[3 + 2 I]
Out[2]=

Or find the absolute value and argument:

In[3]:=
Click for copyable input
AbsArg[(1 + I)]
Out[3]=

Plot a conformal mapping with ParametricPlot:

In[1]:=
Click for copyable input
ParametricPlot[ReIm[E^(I \[Omega])], {\[Omega], 0, 2 \[Pi]}]
Out[1]=

Use AbsArg in a PolarPlot:

In[2]:=
Click for copyable input
PolarPlot[AbsArg[E^(I \[Omega])], {\[Omega], 0, \[Pi]}]
Out[2]=

Visualize complex components with a DensityPlot:

In[3]:=
Click for copyable input
DensityPlot[Im[ArcSin[(x + I y)^2]],
 {x, -2, 2}, {y, -2, 2}]
Out[3]=

QUICK REFERENCE: Complex Numbers »

QUICK REFERENCE: Functions of Complex Variables »