Group Theory SymmetricGroup, AlternatingGroup, DihedralGroup and many other named groups are built-in symbols. Get a list of group elements: In[1]:= ⨯ GroupElements[SymmetricGroup[2]] Out[1]= Determine the generators of a group: In[2]:= ⨯ GroupGenerators[SymmetricGroup[3]] Out[2]= Create a permutation group from two generators: In[1]:= ⨯ PermutationGroup[{Cycles[{{3, 1, 2}}], Cycles[{{2, 5, 6}}]}] Compute its order: In[2]:= ⨯ GroupOrder[%] Out[2]= Show the multiplication table for a group: In[1]:= ⨯ TableForm[GroupMultiplicationTable[DihedralGroup[2]], TableHeadings -> Automatic] Out[1]= Visualize it with a Cayley graph: In[2]:= ⨯ CayleyGraph[DihedralGroup[2]] Out[2]= QUICK REFERENCE: Group Theory »