New in Wolfram
Mathematica
8: New and Improved Core Algorithms
◄
previous
|
next
►
Core Algorithms
Solve High-Degree Real Polynomial Equations Numerically
This approximates real solutions of a sparse polynomial equation of degree one million.
In[1]:=
X
f = x^1000000 - E x^777777 + \[Pi] x^123456 - E^\[Pi] x^33333 + \[Pi]^E x^9876 - E^E^\[Pi] x^545 + E^\[Pi]^E x^99 - E^\[Pi]^\[Pi] x^2 - \[Pi]^\[Pi]^\[Pi]; rts = x /. NSolve[f == 0, x, Reals, WorkingPrecision -> 500];
In[2]:=
X
Grid[{{TraditionalForm[f == 0], SpanFromLeft}, rts}, Frame -> All, Background -> {None, {{LightYellow, LightBlue}}}]
Out[2]=