New in Wolfram
Mathematica
8: Parametric Probability Distributions
◄
previous
|
next
►
Core Algorithms
Parametric Distributions from Other Parametric Distributions
Operation on selected parametric distributions leading to other parametric distributions.
In[1]:=
X
distTable[list_List] := TraditionalForm@ Grid[list, Dividers -> All, Spacings -> {{1, 1}, 5}, Alignment -> {Left, Center}, BaseStyle -> {FontFamily -> "Verdana"}, Background -> {None, {Hue[.6, .5, .9], {Hue[.6, .15, .9], GrayLevel[.9]}}}, FrameStyle -> Directive[Thick, White]];
In[2]:=
X
dists = {HoldForm[ OrderDistribution[{UniformDistribution[{0, 1}], n}, k]], HoldForm[ TransformedDistribution[ Min[u, v], {u \[Distributed] ExponentialDistribution[Subscript[\[Lambda], 1]], v \[Distributed] ExponentialDistribution[Subscript[\[Lambda], 2]]}]], HoldForm[ TransformedDistribution[ u + v, {u \[Distributed] CauchyDistribution[Subscript[a, 1], Subscript[b, 1]], v \[Distributed] CauchyDistribution[Subscript[a, 2], Subscript[b, 2]]}]], HoldForm[ ParameterMixtureDistribution[BorelTannerDistribution[\[Alpha], n], n \[Distributed] PoissonDistribution[\[Mu]]]], HoldForm[ ParameterMixtureDistribution[BinomialDistribution[n, p], p \[Distributed] BetaDistribution[\[Alpha], \[Beta]]]], HoldForm[ TruncatedDistribution[{0, \[Infinity]}, GumbelDistribution[\[Alpha], \[Beta]]]], HoldForm[ TruncatedDistribution[{0, \[Infinity]}, NormalDistribution[0, \[Sigma]]]], HoldForm[MarginalDistribution[BinormalDistribution[\[Rho]], 2]] };
In[3]:=
X
distTable[ Join[{{Style["Derived Distribution", Bold], Style["Parametric Equivalent", Bold]}}, Table[{Extract[dists, i, HoldForm], ReleaseHold[dists[[i]]]}, {i, Length[dists]}]]]
Out[3]=