New in Wolfram
Mathematica
8: Probability and Statistics Solvers and Properties
◄
previous
|
next
►
Core Algorithms
Compute the Probability of an Event
Compute the probabilities of events in parametric, nonparametric, derived, or formula distributions.
In[1]:=
X
probabilities = {HoldForm[ Probability[E^(2 x) > 25, x \[Distributed] PoissonDistribution[\[Lambda]]]], HoldForm[ Probability[(x - 1)^2 + Abs[x] <= 3 x, x \[Distributed] NormalDistribution[0, 1]]], HoldForm[ Probability[ x <= 2 \[And] y <= 3, {x, y} \[Distributed] MultivariatePoissonDistribution[1, {2, 3}]]], HoldForm[ Probability[ 1/3 < x < 1/2 && 1/7 < y^2 + z < 11/13, {x, y, z} \[Distributed] DirichletDistribution[{2, 3, 4, 7}]]], HoldForm[ Probability[23 < x^2 + x < 54, x \[Distributed] TruncatedDistribution[{3, 11}, ExponentialDistribution[2]]]], HoldForm[ Probability[x^5 + 3 x > 166, x \[Distributed] EmpiricalDistribution[{1, 2, 4 E, 5, 7 Pi, 9}]]], HoldForm[ Probability[E^x < 2, x \[Distributed] ProbabilityDistribution[3/4 (x^2 + 2 x), {x, 0, 1}]]], HoldForm[ NProbability[ x^2 + y^3 < 2 \[And] x + y < 1, {x, y} \[Distributed] BinormalDistribution[1/2]]]};
In[2]:=
X
FormulaGallery[forms_List] := Module[{vals = ParallelMap[ReleaseHold, forms]}, TraditionalForm@ Grid[Table[{forms[[i]], vals[[i]]}, {i, Length[forms]}], Dividers -> All, Spacings -> {1, 2}, Alignment -> {Center, Center}, BaseStyle -> {FontFamily -> "Verdana"}, Background -> {None, {{Hue[.6, .15, .9], GrayLevel[.9]}}}, FrameStyle -> Directive[Thick, White]]]
In[3]:=
X
Pane[FormulaGallery[probabilities] , 550]
Out[3]=