« View all new features in
Mathematica
9
◄
previous
|
next
►
New in
Mathematica
9
›
Built-in Symbolic Tensors
Derive and Verify Vector Identities
Simplify expressions involving combinations of cross products and dot products in any dimension.
Famous three-dimensional identities.
In[1]:=
X
TensorExpand[(v\[Cross]w).v == 0]
Out[1]=
In[2]:=
X
TensorExpand[a\[Cross](b\[Cross]c) == b (a.c) - c (a.b)]
Out[2]=
In[3]:=
X
TensorExpand[(a\[Cross]b).(c\[Cross]d) == a.c b.d - a.d b.c]
Out[3]=
Less famous three-dimensional identities.
In[4]:=
X
TensorExpand[ a (b\[Cross]c).d - b (a\[Cross]c).d + c (a\[Cross]b).d - d (a\[Cross]b).c == 0]
Out[4]=
In[5]:=
X
TensorExpand[(a\[Cross]b)\[Cross](c\[Cross]d)]
Out[5]=
Two four-dimensional identities.
In[6]:=
X
TensorExpand[a\[Cross]b\[Cross]c == b\[Cross]c\[Cross]a]
Out[6]=
In[7]:=
X
TensorExpand[(a\[Cross]b\[Cross]c).(d\[Cross]e\[Cross]f)]
Out[7]=