« View all new features in
Mathematica
9
◄
previous
|
next
►
New in
Mathematica
9
›
Enhanced Control Systems
Time-Delay Systems
Time-delay systems can be specified in multiple ways and conveniently converted between state-space and transfer-function representations.
A time-delay system specified as an ODE.
In[1]:=
X
StateSpaceModel[x'[t] + x[t - 1] == 2 u[t] + u[t - 3], x[t], u[t], x[t], t]
Out[1]=
A system specified using state-space matrices and the
SystemsModelDelay
operator.
In[2]:=
X
StateSpaceModel[{{{-SystemsModelDelay[2]}}, {{3 + SystemsModelDelay[1]}}, {{1}}, {{0}}}]
Out[2]=
A system specified as a transfer function.
In[3]:=
X
TransferFunctionModel[(3 + Exp[-s])/(s + Exp[-2 s]), s]
Out[3]=
A transfer function with delays specified using
SystemsModelDelay
.
In[4]:=
X
TransferFunctionModel[(3 + SystemsModelDelay[1])/( s + SystemsModelDelay[2]), s]
Out[4]=
A discrete-time system is determined with the
SamplingPeriod
option.
In[5]:=
X
StateSpaceModel[{{{-SystemsModelDelay[2]}}, {{3 + SystemsModelDelay[1]}}, {{1}}, {{0}}}, SamplingPeriod -> 2]
Out[5]=
In[6]:=
X
TransferFunctionModel[(3 + SystemsModelDelay[1])/( z + SystemsModelDelay[2]), z, SamplingPeriod -> 2]
Out[6]=
Convert between state-space and transfer-function representations.
In[7]:=
X
StateSpaceModel[ TransferFunctionModel[{{{3 + SystemsModelDelay[1]}}, s + SystemsModelDelay[2]}, s]]
Out[7]=
In[8]:=
X
TransferFunctionModel[ StateSpaceModel[{{{-SystemsModelDelay[2]}}, {{3 + SystemsModelDelay[ 1]}}, {{1}}, {{0}}}, SamplingPeriod -> 2, SystemsModelLabels -> None], z]
Out[8]=
Obtain the discrete-time approximations of continuous-time systems and vice versa.
In[9]:=
X
ToContinuousTimeModel[ StateSpaceModel[{{{-SystemsModelDelay[2]}}, {{1}}, {{3 + SystemsModelDelay[1]}}, {{0}}}, SamplingPeriod -> 2, SystemsModelLabels -> None], Method -> "BilinearTransform"]
Out[9]=
In[10]:=
X
ToDiscreteTimeModel[ StateSpaceModel[{{{-SystemsModelDelay[1]}}, {{2 + SystemsModelDelay[ 3]}}, {{1}}, {{0}}}, SamplingPeriod ->None, SystemsModelLabels -> None], 2]
Out[10]=