« View all new features in
Mathematica
9
◄
previous
|
next
►
New in
Mathematica
9
›
Enhanced Core Algorithms
Evaluate Infinite Sums in Terms of Mittag-Leffler's E Function
Evaluate infinite sums with symbolic parameters in terms of
MittagLefflerE
.
In[1]:=
X
Sum[z^k/Gamma[\[Alpha] k + 1], {k, 0, \[Infinity]}]
Out[1]=
In[2]:=
X
Sum[z^k/Gamma[\[Alpha] k + \[Beta]], {k, 0, \[Infinity]}]
Out[2]=
The answer simplifies for special values of the parameters.
In[3]:=
X
Sum[z^k/Gamma[\[Alpha] k + \[Beta]], {k, 0, \[Infinity]}]; % /. {z -> 1, \[Alpha] -> 2, \[Beta] -> 1}
Out[3]=
In[4]:=
X
Sum[1/Gamma[2 k + 1], {k, 0, \[Infinity]}]
Out[4]=
Out[10]//TraditionalForm=