« View all new features in
Mathematica
9
◄
previous
|
next
►
New in
Mathematica
9
›
Units
Perform Dimensional Analysis
Use the Buckingham
theorem to find non-dimensional expressions.
In[1]:=
X
setupBPT[terms_List] := With[{ud = Union[Flatten[UnitDimensions /@ terms, 1][[All, 1]]]}, If[MemberQ[ud, _UnitDimensions], Throw[None]]; {Length@terms - Length[ud], ud}] UDToExp[dimensions_List] := Times @@ (dimensions /. List[d_String, n_] :> Power[d, n]) Nondimensionalize[expr_, vars_List] := With[{exp = expr /. {Power[q_Quantity, n_] :> UDToExp[UnitDimensions[q]]^n, qu_Quantity :> UDToExp[UnitDimensions[qu]]}}, With[{res = Solve[Thread[((List @@ PowerExpand[exp]) /. Power[unit_String, n_] :> n) == 0], vars]}, If[Flatten[res] === {}, Throw[None], With[{nondim = expr /. q_Quantity :> QuantityMagnitude[q]}, First[nondim /. res]]]]] Buckingham\[Pi][terms_List, const : {__Integer}] := Catch[With[{res = setupBPT[terms]}, If[Length[Union[const]] =!= First[res], Throw[None]]; If[MemberQ[const, x_ /; x > Length[terms]], Throw[None]]; With[{c = #}, Module[{temp, vars = {}}, Check[temp = If[Not[MemberQ[const, #]], With[{u = Unique[]}, AppendTo[vars, u]; terms[[#]]^u], If[c =!= #, 1, terms[[#]]]] & /@ Range[Length[terms]], Throw[None], {Part::partw}]; Nondimensionalize[Times @@ temp, vars]]]] & /@ const]
Find the various non-dimensional expressions associated with the following five physical quantities.
In[2]:=
X
BPTMatrixLabels = {"pressure", "dynamic viscosity", "velocity", "characteristic length", "mass density"}; P = Quantity[p, "Newtons"/"Meters"^2]; mu = Quantity[\[Mu], ("Pascals"*"Seconds")]; V = Quantity[v, "Meters"/"Seconds"]; L = Quantity[d, "Meters"]; Rho = Quantity[\[Rho], "Kilograms"/"Meters"^3]; terms = {P, mu, V, L, Rho};
In[3]:=
X
MatrixForm[ Outer[Buckingham\[Pi][terms, {#1, #2}] &, Range[5], Range[5]], TableHeadings -> {BPTMatrixLabels, BPTMatrixLabels}]
Out[3]//MatrixForm=