New in Wolfram Mathematica 6: Real-Time 3D Graphics | ◄ previous | next ► |
Use Real-Time 3D Graphics as Input
Mathematica 6 allows you to treat 3D graphics just like any other form of input to any computation.
In[1]:= | Options[\!\(\* Graphics3DBox[ GraphicsComplex3DBox[ NCache[{{ 0, 0, (Rational[ 9, 8] + Rational[3, 8] 5^Rational[1, 2])^Rational[1, 2]}, { 0, 0, Rational[-1, 2] ( Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 8] + Rational[-1, 24] 5^Rational[1, 2])^Rational[ 1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 8] + Rational[1, 24] 5^Rational[1, 2])^Rational[ 1, 2]}, {( Rational[1, 8] + Rational[-1, 24] 5^Rational[1, 2])^Rational[ 1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 8] + Rational[1, 24] 5^Rational[1, 2])^Rational[ 1, 2]}, {( Rational[1, 8] + Rational[1, 24] 5^Rational[1, 2])^Rational[ 1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2] ( Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 8] + Rational[1, 24] 5^Rational[1, 2])^Rational[ 1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2] ( Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[5, 8] + Rational[5, 24] 5^Rational[1, 2])^Rational[ 1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 8] + Rational[1, 24] 5^Rational[1, 2])^Rational[ 1, 2]}, {( Rational[5, 8] + Rational[5, 24] 5^Rational[1, 2])^Rational[ 1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 8] + Rational[1, 24] 5^Rational[1, 2])^Rational[ 1, 2]}, {-( Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[ 1, 2], Rational[-1, 2], ( Rational[1, 8] + Rational[1, 24] 5^Rational[1, 2])^Rational[ 1, 2]}, {-( Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[ 1, 2], Rational[ 1, 2], (Rational[ 1, 8] + Rational[1, 24] 5^Rational[1, 2])^Rational[ 1, 2]}, {( Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[ 1, 2], Rational[-1, 2], Rational[-1, 2] ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[ 1, 2], Rational[1, 2], Rational[-1, 2] ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, {-( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], 0, Rational[-1, 2] ( Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[5, 8] + Rational[5, 24] 5^Rational[1, 2])^Rational[ 1, 2]}, { Rational[-1, 2] ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[5, 8] + Rational[5, 24] 5^Rational[1, 2])^Rational[ 1, 2]}, {(Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[ 1, 2], 0, ( Rational[5, 8] + Rational[5, 24] 5^Rational[1, 2])^Rational[ 1, 2]}, { Rational[-1, 2] ( Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2] ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] ( Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2] ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2] ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2] ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0, 0, 1.4012585384440737`}, {0, 0, -1.4012585384440737`}, { 0.17841104488654497`, -1.3090169943749475`, 0.46708617948135783`}, {0.17841104488654497`, 1.3090169943749475`, 0.46708617948135783`}, { 0.46708617948135783`, -0.8090169943749475, \ -1.0444364486709836`}, {0.46708617948135783`, 0.8090169943749475, -1.0444364486709836`}, { 1.0444364486709836`, -0.8090169943749475, 0.46708617948135783`}, {1.0444364486709836`, 0.8090169943749475, 0.46708617948135783`}, {-1.2228474935575286`, -0.5, 0.46708617948135783`}, {-1.2228474935575286`, 0.5, 0.46708617948135783`}, { 1.2228474935575286`, -0.5, -0.46708617948135783`}, { 1.2228474935575286`, 0.5, -0.46708617948135783`}, {-0.9341723589627157, 0, -1.0444364486709836`}, {-0.46708617948135783`, \ -0.8090169943749475, 1.0444364486709836`}, {-0.46708617948135783`, 0.8090169943749475, 1.0444364486709836`}, { 0.9341723589627157, 0, 1.0444364486709836`}, {-1.0444364486709836`, \ -0.8090169943749475, -0.46708617948135783`}, {-1.0444364486709836`, 0.8090169943749475, -0.46708617948135783`}, \ {-0.17841104488654494`, -1.3090169943749475`, -0.46708617948135783`}, \ {-0.17841104488654494`, 1.3090169943749475`, -0.46708617948135783`}}], Polygon3DBox[{{15, 10, 9, 14, 1}, {2, 6, 12, 11, 5}, {5, 11, 7, 3, 19}, {11, 12, 8, 16, 7}, {12, 6, 20, 4, 8}, {6, 2, 13, 18, 20}, {2, 5, 19, 17, 13}, {4, 20, 18, 10, 15}, {18, 13, 17, 9, 10}, {17, 19, 3, 14, 9}, {3, 7, 16, 1, 14}, {16, 8, 4, 15, 1}}]], ImageSize->{90., 104.12199652403548`}, ViewPoint->{-0.9624197700327529, -3.07580610224535, \ -1.031098932033377}, ViewVertical->{0.1306488041034501, -0.9156018302076686, 0.5053824851317418}]\), ViewPoint] |
Out[1]= |