New in Wolfram Mathematica 6: Unification of Graphics, Text & Controls  previous | next 
Include Graphics Anywhere in an Expression
Mathematica 6 can use any form of graphic as a "variable name".

Click for copyable input
Apart[\!\(\*

Graphics3DBox[

{RGBColor[1, 1, 0], 

     GraphicsComplex3DBox[

      NCache[{{

        0, 0, (Rational[

           9, 8] + Rational[3, 8] 5^Rational[1, 2])^Rational[1, 2]}, {

        0, 0, Rational[-1, 2] (

           Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, {(

          Rational[

           1, 8] + Rational[-1, 24] 5^Rational[1, 2])^Rational[1, 2], 

         Rational[1, 4] (-3 - 5^Rational[1, 2]), (

          Rational[1, 8] + Rational[1, 24] 5^Rational[1, 2])^Rational[

          1, 2]}, {(

          Rational[

           1, 8] + Rational[-1, 24] 5^Rational[1, 2])^Rational[1, 2], 

         Rational[1, 4] (3 + 5^Rational[1, 2]), (

          Rational[1, 8] + Rational[1, 24] 5^Rational[1, 2])^Rational[

          1, 2]}, {(

          Rational[1, 8] + Rational[1, 24] 5^Rational[1, 2])^Rational[

          1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 

         Rational[-1, 2] (

           Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, {(

          Rational[1, 8] + Rational[1, 24] 5^Rational[1, 2])^Rational[

          1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 

         Rational[-1, 2] (

           Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, {(

          Rational[5, 8] + Rational[5, 24] 5^Rational[1, 2])^Rational[

          1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), (

          Rational[1, 8] + Rational[1, 24] 5^Rational[1, 2])^Rational[

          1, 2]}, {(

          Rational[5, 8] + Rational[5, 24] 5^Rational[1, 2])^Rational[

          1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), (

          Rational[1, 8] + Rational[1, 24] 5^Rational[1, 2])^Rational[

          1, 2]}, {-(

           Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[

           1, 2], Rational[-1, 2], (

          Rational[1, 8] + Rational[1, 24] 5^Rational[1, 2])^Rational[

          1, 2]}, {-(

           Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[

           1, 2], Rational[

         1, 2], (Rational[

           1, 8] + Rational[1, 24] 5^Rational[1, 2])^Rational[

          1, 2]}, {(

          Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[

          1, 2], Rational[-1, 2], 

         Rational[-1, 2] (

           Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, {(

          Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[

          1, 2], Rational[1, 2], 

         Rational[-1, 2] (

           Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, {-(

           Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], 0, 

         Rational[-1, 2] (

           Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, {

        Rational[-1, 2] (

           Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], 

         Rational[1, 4] (-1 - 5^Rational[1, 2]), (

          Rational[5, 8] + Rational[5, 24] 5^Rational[1, 2])^Rational[

          1, 2]}, {

        Rational[-1, 2] (

           Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], 

         Rational[1, 4] (1 + 5^Rational[1, 2]), (

          Rational[5, 8] + Rational[5, 24] 5^Rational[1, 2])^Rational[

          1, 2]}, {(Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[

          1, 2], 0, (

          Rational[5, 8] + Rational[5, 24] 5^Rational[1, 2])^Rational[

          1, 2]}, {

        Rational[-1, 2] (

           Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], 

         Rational[1, 4] (-1 - 5^Rational[1, 2]), 

         Rational[-1, 2] (

           Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, {

        Rational[-1, 2] (

           Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], 

         Rational[1, 4] (1 + 5^Rational[1, 2]), 

         Rational[-1, 2] (

           Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, {

        Root[1 - 36 #^2 + 144 #^4& , 2, 0], 

         Rational[1, 4] (-3 - 5^Rational[1, 2]), 

         Rational[-1, 2] (

           Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, {

        Root[1 - 36 #^2 + 144 #^4& , 2, 0], 

         Rational[1, 4] (3 + 5^Rational[1, 2]), 

         Rational[-1, 2] (

           Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{

        0, 0, 1.4012585384440737`}, {0, 0, -1.4012585384440737`}, {

        0.17841104488654497`, -1.3090169943749475`, 

        0.46708617948135783`}, {0.17841104488654497`, 

        1.3090169943749475`, 0.46708617948135783`}, {

        0.46708617948135783`, -0.8090169943749475, \

-1.0444364486709836`}, {0.46708617948135783`, 

        0.8090169943749475, -1.0444364486709836`}, {

        1.0444364486709836`, -0.8090169943749475, 

        0.46708617948135783`}, {1.0444364486709836`, 

        0.8090169943749475, 

        0.46708617948135783`}, {-1.2228474935575286`, -0.5, 

        0.46708617948135783`}, {-1.2228474935575286`, 0.5, 

        0.46708617948135783`}, {

        1.2228474935575286`, -0.5, -0.46708617948135783`}, {

        1.2228474935575286`, 

        0.5, -0.46708617948135783`}, {-0.9341723589627157, 

         0, -1.0444364486709836`}, {-0.46708617948135783`, \

-0.8090169943749475, 1.0444364486709836`}, {-0.46708617948135783`, 

        0.8090169943749475, 1.0444364486709836`}, {

        0.9341723589627157, 0, 

         1.0444364486709836`}, {-1.0444364486709836`, \

-0.8090169943749475, -0.46708617948135783`}, {-1.0444364486709836`, 

        0.8090169943749475, -0.46708617948135783`}, \

{-0.17841104488654494`, -1.3090169943749475`, -0.46708617948135783`}, \

{-0.17841104488654494`, 1.3090169943749475`, -0.46708617948135783`}}],

       Polygon3DBox[{{15, 10, 9, 14, 1}, {2, 6, 12, 11, 5}, {5, 11, 7,

        3, 19}, {11, 12, 8, 16, 7}, {12, 6, 20, 4, 8}, {6, 2, 13, 18, 

       20}, {2, 5, 19, 17, 13}, {4, 20, 18, 10, 15}, {18, 13, 17, 9, 

       10}, {17, 19, 3, 14, 9}, {3, 7, 16, 1, 14}, {16, 8, 4, 15, 

       1}}]]},

ImageSize->{44., Automatic}]\)/(\!\(\*

Graphics3DBox[

{RGBColor[1, 1, 0], 

      GraphicsComplex3DBox[

       NCache[{{0, 0, Root[5 - 20 #^2 + 16 #^4& , 1, 0]}, {

         0, 0, Root[5 - 20 #^2 + 16 #^4& , 4, 0]}, {

         Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, Root[

          1 - 20 #^2 + 80 #^4& , 1, 0]}, {

         Root[1 - 5 #^2 + 5 #^4& , 4, 0], 0, Root[

          1 - 20 #^2 + 80 #^4& , 4, 0]}, {

         Root[1 - 40 #^2 + 80 #^4& , 1, 0], Rational[-1, 2], Root[

          1 - 20 #^2 + 80 #^4& , 4, 0]}, {

         Root[1 - 40 #^2 + 80 #^4& , 1, 0], Rational[1, 2], Root[

          1 - 20 #^2 + 80 #^4& , 4, 0]}, {

         Root[1 - 40 #^2 + 80 #^4& , 4, 0], Rational[-1, 2], Root[

          1 - 20 #^2 + 80 #^4& , 1, 0]}, {

         Root[1 - 40 #^2 + 80 #^4& , 4, 0], Rational[1, 2], Root[

          1 - 20 #^2 + 80 #^4& , 1, 0]}, {

         Root[1 - 20 #^2 + 80 #^4& , 2, 0], 

          Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[

          1 - 20 #^2 + 80 #^4& , 1, 0]}, {

         Root[1 - 20 #^2 + 80 #^4& , 2, 0], 

          Rational[1, 4] (1 + 5^Rational[1, 2]), Root[

          1 - 20 #^2 + 80 #^4& , 1, 0]}, {

         Root[1 - 20 #^2 + 80 #^4& , 3, 0], 

          Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[

          1 - 20 #^2 + 80 #^4& , 4, 0]}, {

         Root[1 - 20 #^2 + 80 #^4& , 3, 0], 

          Rational[1, 4] (1 + 5^Rational[1, 2]), Root[

          1 - 20 #^2 + 80 #^4& , 4, 0]}, {

         Root[1 - 290 #^2 + 2555 #^4 - 5850 #^6 + 2025 #^8& , 1, 0], 

          0, Root[1 - 7720 #^2 + 127280 #^4 - 489600 #^6 + 518400 #^8& ,

            6, 0]}, {

         Root[1 - 290 #^2 + 2555 #^4 - 5850 #^6 + 2025 #^8& , 8, 0], 

          0, Root[1 - 7720 #^2 + 127280 #^4 - 489600 #^6 + 518400 #^8& ,

            3, 0]}, {

         Root[1 - 740 #^2 + 3230 #^4 - 4500 #^6 + 2025 #^8& , 1, 0], 

          0, Root[1 - 520 #^2 + 40880 #^4 - 835200 #^6 + 518400 #^8& ,

            8, 0]}, {

         Root[1 - 740 #^2 + 3230 #^4 - 4500 #^6 + 2025 #^8& , 8, 0], 

          0, Root[1 - 520 #^2 + 40880 #^4 - 835200 #^6 + 518400 #^8& ,

            1, 0]}, {

         Root[1 - 520 #^2 + 40880 #^4 - 835200 #^6 + 518400 #^8& , 1, 

           0], Root[1 + 28 # - 20 #^2 - 144 #^3 + 144 #^4& , 4, 0], 

          Root[

          1 - 7720 #^2 + 127280 #^4 - 489600 #^6 + 518400 #^8& , 3, 

           0]}, {Root[

          1 - 520 #^2 + 40880 #^4 - 835200 #^6 + 518400 #^8& , 1, 0], 

          Root[1 - 28 # - 20 #^2 + 144 #^3 + 144 #^4& , 1, 0], Root[

          1 - 7720 #^2 + 127280 #^4 - 489600 #^6 + 518400 #^8& , 3, 

           0]}, {Root[

          1 - 520 #^2 + 40880 #^4 - 835200 #^6 + 518400 #^8& , 8, 0], 

          Root[1 + 28 # - 20 #^2 - 144 #^3 + 144 #^4& , 4, 0], Root[

          1 - 7720 #^2 + 127280 #^4 - 489600 #^6 + 518400 #^8& , 6, 

           0]}, {Root[

          1 - 520 #^2 + 40880 #^4 - 835200 #^6 + 518400 #^8& , 8, 0], 

          Root[1 - 28 # - 20 #^2 + 144 #^3 + 144 #^4& , 1, 0], Root[

          1 - 7720 #^2 + 127280 #^4 - 489600 #^6 + 518400 #^8& , 6, 

           0]}, {Root[

          1 - 7720 #^2 + 127280 #^4 - 489600 #^6 + 518400 #^8& , 3, 

           0], Root[1 + 28 # - 20 #^2 - 144 #^3 + 144 #^4& , 4, 0], 

          Root[1 - 520 #^2 + 40880 #^4 - 835200 #^6 + 518400 #^8& , 8,

            0]}, {Root[

          1 - 7720 #^2 + 127280 #^4 - 489600 #^6 + 518400 #^8& , 3, 

           0], Root[1 - 28 # - 20 #^2 + 144 #^3 + 144 #^4& , 1, 0], 

          Root[

          1 - 520 #^2 + 40880 #^4 - 835200 #^6 + 518400 #^8& , 8, 

           0]}, {Root[

          1 - 7720 #^2 + 127280 #^4 - 489600 #^6 + 518400 #^8& , 6, 

           0], Root[1 + 28 # - 20 #^2 - 144 #^3 + 144 #^4& , 4, 0], 

          Root[1 - 520 #^2 + 40880 #^4 - 835200 #^6 + 518400 #^8& , 1,

            0]}, {Root[

          1 - 7720 #^2 + 127280 #^4 - 489600 #^6 + 518400 #^8& , 6, 

           0], Root[1 - 28 # - 20 #^2 + 144 #^3 + 144 #^4& , 1, 0], 

          Root[1 - 520 #^2 + 40880 #^4 - 835200 #^6 + 518400 #^8& , 1,

            0]}, {Root[

          1 - 1160 #^2 + 40880 #^4 - 374400 #^6 + 518400 #^8& , 1, 0],

           Root[1 + 44 # - 100 #^2 - 48 #^3 + 144 #^4& , 3, 0], Root[

          1 - 520 #^2 + 40880 #^4 - 835200 #^6 + 518400 #^8& , 1, 

           0]}, {Root[

          1 - 1160 #^2 + 40880 #^4 - 374400 #^6 + 518400 #^8& , 1, 0],

           Root[1 - 44 # - 100 #^2 + 48 #^3 + 144 #^4& , 2, 0], Root[

          1 - 520 #^2 + 40880 #^4 - 835200 #^6 + 518400 #^8& , 1, 

           0]}, {Root[

          1 - 1160 #^2 + 40880 #^4 - 374400 #^6 + 518400 #^8& , 8, 0],

           Root[1 + 44 # - 100 #^2 - 48 #^3 + 144 #^4& , 3, 0], Root[

          

          1 - 520 #^2 + 40880 #^4 - 835200 #^6 + 518400 #^8& , 8, 

           0]}, {Root[

          1 - 1160 #^2 + 40880 #^4 - 374400 #^6 + 518400 #^8& , 8, 0],

           Root[1 - 44 # - 100 #^2 + 48 #^3 + 144 #^4& , 2, 0], Root[

          1 - 520 #^2 + 40880 #^4 - 835200 #^6 + 518400 #^8& , 8, 

           0]}, {Root[

          1 - 2960 #^2 + 51680 #^4 - 288000 #^6 + 518400 #^8& , 1, 0],

           Root[1 + 16 # - 40 #^2 - 192 #^3 + 144 #^4& , 4, 0], Root[

          1 - 7720 #^2 + 127280 #^4 - 489600 #^6 + 518400 #^8& , 6, 

           0]}, {Root[

          1 - 2960 #^2 + 51680 #^4 - 288000 #^6 + 518400 #^8& , 1, 0],

           Root[1 - 16 # - 40 #^2 + 192 #^3 + 144 #^4& , 1, 0], Root[

          1 - 7720 #^2 + 127280 #^4 - 489600 #^6 + 518400 #^8& , 6, 

           0]}, {Root[

          1 - 2960 #^2 + 51680 #^4 - 288000 #^6 + 518400 #^8& , 8, 0],

           Root[1 + 16 # - 40 #^2 - 192 #^3 + 144 #^4& , 4, 0], Root[

          1 - 7720 #^2 + 127280 #^4 - 489600 #^6 + 518400 #^8& , 3, 

           0]}, {Root[

          1 - 2960 #^2 + 51680 #^4 - 288000 #^6 + 518400 #^8& , 8, 0],

           Root[1 - 16 # - 40 #^2 + 192 #^3 + 144 #^4& , 1, 0], Root[

          

          1 - 7720 #^2 + 127280 #^4 - 489600 #^6 + 518400 #^8& , 3, 

           0]}}, {{0, 0, -0.9510565162951532}, {

         0, 0, 0.9510565162951536}, {-0.8506508083520394, 

          0, -0.4253254041760197}, {

         0.85065080835204, 0, 

          0.42532540417602}, {-0.6881909602355868, -0.5, 

         0.42532540417602}, {-0.6881909602355868, 0.5, 

         0.42532540417602}, {

         0.6881909602355868, -0.5, -0.4253254041760197}, {

         0.6881909602355868, 

         0.5, -0.4253254041760197}, {-0.2628655560595671, \

-0.8090169943749475, -0.4253254041760197}, {-0.2628655560595671, 

         0.8090169943749475, -0.4253254041760197}, {

         0.2628655560595668, -0.8090169943749475, 0.42532540417602}, {

         0.2628655560595668, 0.8090169943749475, 

         0.42532540417602}, {-1.5443455162844653`, 0, 

          0.29494374842358073`}, {

         1.5443455162844655`, 

          0, -0.29494374842358073`}, {-0.9544580194373125, 0, 

          1.2494017678608846`}, {

         0.954458019437308, 

          0, -1.2494017678608846`}, {-1.2494017678608846`, 

         0.9077435189160142, -0.29494374842358073`}, \

{-1.2494017678608846`, -0.9077435189160141, -0.29494374842358073`}, {

         1.2494017678608846`, 0.9077435189160142, 

         0.29494374842358073`}, {

         1.2494017678608846`, -0.9077435189160141, 

         0.29494374842358073`}, {-0.29494374842358073`, 

         0.9077435189160142, 

         1.2494017678608846`}, {-0.29494374842358073`, \

-0.9077435189160141, 1.2494017678608846`}, {0.29494374842358073`, 

         0.9077435189160142, -1.2494017678608846`}, {

         0.29494374842358073`, -0.9077435189160141, \

-1.2494017678608846`}, {-0.7721727581422326, 

         0.5610163477575296, -1.2494017678608846`}, \

{-0.7721727581422326, -0.5610163477575298, -1.2494017678608846`}, {

         0.7721727581422327, 0.5610163477575296, 

         1.2494017678608846`}, {

         0.7721727581422327, -0.5610163477575298, 

         1.2494017678608846`}, {-0.4772290097186562, 

         1.468759866673544, 

         0.29494374842358073`}, {-0.4772290097186562, \

-1.468759866673544, 0.29494374842358073`}, {0.477229009718654, 

         1.468759866673544, -0.29494374842358073`}, {

         0.477229009718654, -1.468759866673544, \

-0.29494374842358073`}}], 

       Polygon3DBox[{{21, 2, 12}, {21, 12, 6}, {21, 6, 2}, {15, 2, 

        6}, {15, 6, 5}, {15, 5, 2}, {22, 2, 5}, {22, 5, 11}, {22, 11, 

        2}, {28, 2, 11}, {28, 11, 4}, {28, 4, 2}, {27, 2, 4}, {27, 4, 

        12}, {27, 12, 2}, {24, 7, 9}, {24, 9, 1}, {24, 1, 7}, {16, 8, 

        7}, {16, 7, 1}, {16, 1, 8}, {23, 10, 8}, {23, 8, 1}, {23, 1, 

        10}, {25, 3, 10}, {25, 10, 1}, {25, 1, 3}, {26, 9, 3}, {26, 3,

         1}, {26, 1, 9}, {29, 12, 10}, {29, 10, 6}, {29, 6, 12}, {13, 

        6, 3}, {13, 3, 5}, {13, 5, 6}, {30, 5, 9}, {30, 9, 11}, {30, 

        11, 5}, {20, 11, 7}, {20, 7, 4}, {20, 4, 11}, {19, 4, 8}, {19,

         8, 12}, {19, 12, 4}, {32, 7, 11}, {32, 11, 9}, {32, 9, 7}, {

        14, 8, 4}, {14, 4, 7}, {14, 7, 8}, {31, 10, 12}, {31, 12, 

        8}, {31, 8, 10}, {17, 3, 6}, {17, 6, 10}, {17, 10, 3}, {18, 9,

         5}, {18, 5, 3}, {18, 3, 9}}]]},

ImageSize->{49., Automatic}]\)^10 - 1)]
Out[1]=