\[Alpha] = Sqrt[
2 m (\[CapitalGamma] - \[CapitalEpsilon])]/\[HBar]; k = Sqrt[
2 m \[CapitalEpsilon]]/\[HBar];
Subscript[\[Psi], 1] = G Exp[\[Alpha] x]; Subscript[\[Psi], 2] =
A Sin[k x] + B Cos[k x]; Subscript[\[Psi], 3] = H Exp[-\[Alpha] x];
bconds = {(Subscript[\[Psi], 1] /. x -> -L/2) == (Subscript[\[Psi],
2] /. x -> -L/2), (Subscript[\[Psi], 2] /.
x -> L/2) == (Subscript[\[Psi], 3] /. x -> L/2), (\!\(
\*SubscriptBox[\(\[PartialD]\), \(x\)]
\*SubscriptBox[\(\[Psi]\), \(1\)]\) /. x -> -L/2) == (\!\(
\*SubscriptBox[\(\[PartialD]\), \(x\)]
\*SubscriptBox[\(\[Psi]\), \(2\)]\) /. x -> -L/2), (\!\(
\*SubscriptBox[\(\[PartialD]\), \(x\)]
\*SubscriptBox[\(\[Psi]\), \(2\)]\) /. x -> L/2) == (\!\(
\*SubscriptBox[\(\[PartialD]\), \(x\)]
\*SubscriptBox[\(\[Psi]\), \(3\)]\) /. x -> L/2)};
d = Det[CoefficientArrays[bconds, {A, B, G, H}][[2]]];
\[HBar] = 1; L = 1; \[CapitalGamma] = 100; m = 1;
spec = Reduce[d == 0 && \[CapitalEpsilon] > 1/1000, \[CapitalEpsilon],
Reals]