Algebra and Number Theory

Mersenne Primes and Perfect Numbers

A Mersenne prime is a prime number of the form , where the Mersenne prime exponent is itself also a prime number. Each Mersenne prime corresponds to an even perfect number.

Generate a list of Mersenne prime exponents.

In[1]:=
Click for copyable input
mpe = Table[MersennePrimeExponent[n], {n, 1, 10}]
Out[1]=

Construct the corresponding Mersenne primes.

In[2]:=
Click for copyable input
mp = 2^mpe - 1
Out[2]=

Construct the corresponding perfect numbers.

In[3]:=
Click for copyable input
pn = 2^(mpe - 1) (2^mpe - 1)
Out[3]=
In[4]:=
Click for copyable input
AllTrue[pn, PerfectNumberQ]
Out[4]=

Visualize how sparse the distribution of small Mersenne prime exponents is by emphasizing them in red in the list of the first 225 primes.

In[5]:=
Click for copyable input
primes = Replace[Prime@Range[225], x_?MersennePrimeExponentQ :> Style[x, Red, Bold], 1];
In[6]:=
Click for copyable input
Multicolumn[primes, Alignment -> {Center, Center}, Spacings -> {1, 1}, Frame -> All, FrameStyle -> Directive[Orange, Dashing[Small]]]
Out[6]=

Related Examples

de es fr ja ko pt-br ru zh