« View all new features in
Mathematica
9
◄
previous
|
next
►
New in
Mathematica
9
›
Markov Chains and Queues
Analyze the Performance of a Queueing Network
Define an open queueing network.
In[1]:=
X
\[Gamma] = {3, 6}; \[Mu] = {7, 17}; r = {{1/6, 1/9}, {1/4, 1/8}}; c = {1, 1};
In[2]:=
X
\[ScriptCapitalN] = QueueingNetworkProcess[\[Gamma], r, \[Mu], c];
Simulate the network.
In[3]:=
X
data = RandomFunction[\[ScriptCapitalN], {0, 10}];
Plot the simulated values at the nodes in the network.
In[4]:=
X
ListLinePlot[data, Filling -> Axis]
Out[4]=
Performance measures at the nodes in the network.
In[5]:=
X
Table[QueueProperties[{\[ScriptCapitalN], i}], {i, 2}] // N
Out[5]=
Stationary distribution for the network.
In[6]:=
X
\[ScriptCapitalD] = StationaryDistribution[\[ScriptCapitalN]];
Probability density function for the steady state of the network.
In[7]:=
X
PDF[\[ScriptCapitalD], {m, n}]
Out[7]=
In[8]:=
X
DiscretePlot3D[ PDF[\[ScriptCapitalD], {m, n}] // Evaluate, {m, 0, 4}, {n, 0, 4}, ExtentSize -> 0.5, PlotRange -> All]
Out[8]=
Cumulative distribution function for the steady state of the network.
In[9]:=
X
CDF[\[ScriptCapitalD], {m, n}]
Out[9]=
In[10]:=
X
DiscretePlot3D[ CDF[\[ScriptCapitalD], {m, n}] // Evaluate, {m, 0, 35}, {n, 0, 35}, ExtentSize -> Right, PlotRange -> {0, 1.05}]
Out[10]=