« View all new features in
Mathematica
9
◄
previous
|
next
►
New in
Mathematica
9
›
Random Processes
Estimate Process Parameters from Data
In[1]:=
X
stock = \!\(\* TagBox[ RowBox[{"TemporalData", "[", PanelBox["1", FrameMargins->Small], "]"}], InterpretTemplate[TemporalData[Automatic, {CompressedData[" 1:eJwUV3k4lG8Xtu/L2MfYzTDGliX7MqcQLYokRZEWIkQhSSVEKUTZIlooSkoq RT9zokVlSShRSWTLLkvW7/3+mOu93nne5znnOec+59y3yt7DWw9wsLGxsRO/ dSJsbKaGuxwb/7azDsw/fF54rZ1lCtpvKzf3sM7lKomUH/jNGmTLmaksmWT9 W5Ddx7d6imXf9VzhSMAsK8h/54E/PtOsYBszPznmFMt/jZO36+s/rFIbo03h bd9ZQTKyyjzj9axb/AZvo+R7mOwnljrWZU8zb90zFy/1ZAMLgck93BfZIfyc RtWzODZ4H+ezs2RymVk0XfJjQXWB2X+xKLVDaZb5u/6OfNzwHDMn7YhWTuAs 83ycQ+DdHf+YwmmXzL+p/WMGnnNWjv40y6Tdil8arZlkxtoe0DN0nGDOMPL3 pTZOMOUjHEjhklPMYcohqlFWL7PBUto6svQR0/vRIRmTj9Us24DVoo4+bSxt WVZPx/km1tbJI5L2St2sunfMwuXwX6yOcxQRr4+trBt8ZlerIp6zDCcvJwz7 f2DaeB9aVh36yux3esLHEfObeUPAnu2GxjhT+9HuZP3BOeYx08ea63bPMPfE hB7dwzfHlFC0ufBjywJTfGL025OAf8w7LDfJ1Ow5prYe+ztIn2VWbSh+02Q0 yzy7dt4wb+gv0/qNHnui5wQzS+/EmM3ZCWa/ct3LnXf/MEUKJXsUT3QxNfe2 H6intbJkprZHuN5vZZEeX73rG9PDotPeJcdEDrAYGQ3fHBr7WNMp8++4rLtZ SrVtzUf0B1jzp12fsVJ6WfOe0X2/qn+yrFNmeIJ/DLIUXOXDpyR7WFV2HU+f MoZY4c7z3dTiP6wO7ZzX/KODrPMhjod1AidZ29fUGFNrZljXMnVd3FfY8e4B Ob4tK1xo7ZIzGDvAi5vuZWsqtwigW5KNwfnv/Li4qTBdVl8Ae6ZT8ufFRNHI sdgzwZ6EX0K0nlnwC+HT3T7n7oXwYZBUzb17cjyY5dLv9uEkBzoyPiWPr1ti NYQcuq5Xsciq2/M6qFJzgdVmzVYsuW+BVdoWcjtbdp51y3fL4UWHJda+rN6I op1suP6puWOO1wprZlvl7wPZbHib7c507DtOtNjwK07ZigMvKWdIRhWzI3NS 1sPYhh2TqpsV/oqzY5WPVH/98BJrdHZAz85rmjVmsuf7B+5+Vriu39GYlV8s EaljR7s+fWZ5z/6d0hAdZJXW1X+ZaSXifWx0+kT8F9bo0912u5IbWIwv+06w 2TWzCnahomVpG+ub8+ID7fx6Zm5X5uH3yoPM4iHLfHSdZjKS3SgHdrPDs2L6 S2FBLkiXY28Up/HAF8NLfDjEDx+P6EoP/eGHnIgREW8PYbiaqxSntl4EzPNC Luo4keA/85d2z/NIYL3BaOOWRjEoWn0ux2aIBDnnfa6FFJNgiHTa319OHEoj V//ItpIEZ88WSd54aQgSvBL5u0UannbE2NKlycDgtXPPkZeF+Y8UucExWbiu czvaMEAWcqaZXn+pZNjgwCN7f0AayNdT2IYuyoBeqFRURTLxP23bp3cZMvDF l1baqEmGl96puw3NKVDd/Jq565ccdFeMXtOOowDvKQep4XlZsGfjiFe2IkNa TI6ihIQM9Cc7HL4wJwVyj+JS5LSkYdXHrl0OtySBfOWKhb+MJIT+4E1/Uy4G 8zyPLv98SQLhAM3vA+JiIFhUcCPjvBhseaLN8a9UHCyyHp8W5ReH+Z9flnND SXBZ7YzWxFVReHVIgnLVngSLl4teXaoRA5nOGIG6ZXEYWbzAq9sjBn1vtnvG 3CfBzFR3WnauGGh4lQWK08RBXtliar5NAuzG3pyf4BCHuzohOqkpJHCxXJP1 ykAEPkZdXXivJAxrtG2fWZ8RAUNcq5O3RwQufdyxJNEmBJ/V1T6by/GBDqu6 wT2fB6oqpOzZPHkhfCphRMlNAERaFznlYwSBFuK0y+2dEMy8EuN7eY4EbVWc YnvXiMHvJ7znHAk/9gwf07bkkIC47YkThz9IQuW+N+rN5VKgaxb7b5aPyGP9 4v6kdCnYzC0UcJpHBhY9m4dpujIgdW30eskqGYBD1meOj8lA/Ybwr0WryeD6 JqlReJ8M3BLVcoej0sC1JfS/gt/SUHfmHE+yrQzYRxVtNnspA+fNZuTX8sqA p4L+4gFpKXAkXC6+JAnuXi+zbwRIglDoxexghgwUPs8g/6aRAaqnK07ESYPO fdO9OTbSEHW+sOLVVhk4V6Z9vLCMDDO7vpR8iaaA5pOH9k1yFEjsfRDqK0gB vo+j9P1nKVCZJX2g/RYFioav2j95T4HIvnVfrzyShzXPIDPygzzMl0qMa52T h6cU/5N/dsnD9WtiNk9fyYNl7PCFA0co4F21oOX9XQYSSEfjPZalQUV4S6uc lQxsvlszVuQjA3vsTimetiVDD/PPoDnhb1rR+yskKTI8nU0q7yPwK/5LIm7H ThmQicyMzq+Uhs8NOsUMBRloXtl8KiaTDA7FgtlbrsqA6X2BQTF54tyhgm6+ ZRmoC2sYwN+y8LZmj/vsghxsPd5CsjghD8kq9QWqdxXArf0dsP9UhM++PwLD Q5VhzUbJ/cdvK8OmGwHP9s8oQ62musXRfBX4meB0+l66CjiQX2/Y3a8CeYn/ rE5aUGF4Ufp9BCcNegYU/pZ60sCjc02lrT8NTtPXX1rdSAPnMYNDF/XV4Nyz mA+n+mmQUdsYvJRHgw5mHlfLQSpc3TV7OX41FWj8734etqRC0O4PUXpaVOD5 tF++MJ0KxdHd9SnXqJB+wc4raFQVslZYGkkiVDC3oN1fnUiFp5nvlLtjqVB+ IUnkaiEV4o9s751JokLdamNXkTQqrPods179IxVC107fEj1Hhcu6fH/f91GB 9dgvRs+bBlK3BhmRCWrAXqeUGrKgBkcdVzk5OKnDA2+Bi1t3q8Pbpb+bCi3o EMfNqkziokPqQ9N0UKaDF3dzLzWWDhFMLWk3Njr4h32Po8iqw7MnJfdOXFQj cKCS4/iVBpTpD4OqTTTQv70QMsOuBnvqjBMVI9Sg6ulonm8yDcLEH6dscqbB 9ubxdXJ7aFB+711EO5MGI6/cossqaJDlOPZ+qY2Ia7Spcxm3GuSek+egRKnB bG3b51YLNVD6fPWKKocauOy3qXxN2LOuob/p0qPBaEYUx5IPFc6Zc3YG81Bh 9T3V0vN+VLhT9JJ+dVEVIhhHjIbfUGF0rzVj7BcVWrLyNq5CKuw/9W2fRQcV avm4MjzuE3H7xtraskwFvsXJCNdJIj9Tju21RFxPR3N7HY1ShcrwgRtFb1Vg U9YNVuAGVbBvGtR2O6YKCSe+S9j9UwWS/a3T0cNUuBZRr3iqnQpD9WjxXIoG mpFzGeNVVDDsPFJ5YpwGnD82mN9NJ+Lz2o1185EauP/qKnnSowZfooJ8xszo cG46rKRkKx10GxfONAfS4X5uI/urZDqYDDofcDengx3b5Msvr9UB58NkRZPU gaxi6b1/lzpsUOW4HF+oDrXHNz3RS1CHTZ95jizFqQPL5JGKYYM69IKBvnun OnSa8s0M2qlD/uxf8ctn1aBIwoysHkADjQCZU991aHBF0/dwyzEqfNIfu5nR SgXxRmGhgJNUOOkqrHbwCFEHzWumSwZVoeFu1cepVargOlliN8VShbXGOgzn V6oQfNwvae11Vah4viP3PwdVOHpdI8H7jSqsOr68/9wBIr4Cm3anBFGhaInb YUM5FW5kvBUefU6F3vpmd/9EGlw/s/HM0/9o8GL+y2Mqiwbrr7j0eq3QYP56 nciHLWpAly19v7VaHS4W7Ds9VkKHei3NP1E5dJiRHtjmdY4OOtwCureCiPuK Nj+aiVUDOzHdJ0buajD5cPuiD68anNg8Y7x8jchLRktmZw8NhFpr7CjfaeCu 0ttZPkUDnVfmSj11NFDJVZw1zaTB8QOxOvtMaPDFi5llKagG6dOdXfOX1WBD 54eQtkoaBFyz/O4/RIMZcP1zJZ4Gxcrr5JiH1ID6ZvXhCCKvv2X5Q3n7iHyf 7+vdSPSH1KjFr+IiatB3imI9bkGDBnWB82faVWFH19UDXE5UOLCDl3kpmQrT 0jN+XZVU4OSXXrdLmPDP4ldcfzhhh8NX6X4SUSfosu3FezUomTHhuSepDlfX d/YfGFcHzo8MzYpWdXiyz935yx91OLEj/GrNajqoRT7oUvBThxyJIjPXq+qQ 9ui75R0ZOiRfqmgcbKMDd3lnrNggHd7yv37IP0QH1lHeHFMdBty/nGc4rceA Wj2nTq5vGlD2zqZEfi0DxLKoviPrGFDZ35ns7MKA6/IL0Y+rNaAr8RszLJgB jinW3EcKGXDxn871+fMMkC7x2ctxWQMOWkyNPmZowHmuA+EVVnQY+RvXf/+a OtRFTXRvKFSDZ3eSP15nEnFrXbVl7qEaCHGtUqviUgcdtvGqYD51aLMqctBQ UAf3Q0LGSonqQJ9NiXgsrw5ihpm5/X/UYMjsBW8Kgf9Bzfsk6S512Kqtu9+J TIfLxzqryEV0GPq6NXXKSwNe7vBNIhtpgNohVsPVRTr8yHSy1i/UAK+GS4Zm TzRgfuxtCu8qDZBvy2+6+5sO4aNtryVW1GHLl/EpBS06ZHjt2lgcqA6L7lG9 +YSdGwKR9x4Y0OGMjk23hzsdfvrS16n2qcP9F9uLz3LSwXVpU0NpujqEyD4X 6t1OB6kqV1/aLjoM6JJOZUXRoSpfpo8qrQG8um2/nb7T4d1CwnLEBB3O/5rO qdHUADEn0pEAWw3IfXXkUwkRv9x0ZTsFHw1okUp9TXtG2L0j9FE1lA6r+O6r eDarQcCRTYGR+Wowc9Ax9quuGhR/5Ttf1UuFXBuLZcvDRD8SetRy05EK/fcO 3vATpcITgcDDaqeJfucdSb+nTYMHX64b5hE4bqAFSXSZqIERJVx77YAaVF6Q ker5pQ4DzMNDTqHq4CLy5+iLaHU42p+wzZboM/a5v7ZtJOx+g32LvMFqBH9l o4y+oMFbVh3Ph400WNn1ZmpzKRUi1udO/3KhgvfV7viTFapw4Snpvw9E/xA3 Oi8dt1MFvjk8H32lpApS8xoS5wpVIdCH+2yjHBUCKr0tuzSpIOA1ptlB9K19 wjBw8BZxv3N89QI16sBH4y1iv0GH9AnmSRki3yGz5UVPifgFHbEPdsvSAPt2 xW1uJzTgC82w7keRBnjv6Prdc1gDPrUeTauV0oDDMWEvVK7TIXN73EeL03R4 1F4yOYB00EjYzLbjoAZ4Dkia6//WgI+f59wu/SXwPHBGIi6HAS7x1hZOnxiQ to7k6PVQE85z3C+SttEE2kdxh+2xmqAzWHWzTpN4j/H3uh+qCdJytqQRfk0Q 517UNnqjAWeOWGSxB2vA6MFnp0YqNaA4vo8S9FwDAipsMs+MEzgYGT6dRPSR tsWUmMd+avDIyWR67xca3NvuzfaL6CNBTnYxCUTe3s409JqK06A0lKG2/jcV nr2w8LjKRuTzt8OvV/9RoYJecW11JxVMm4SE3ujTIOX2u0uLDjQQmWzaKjFH g0gdbxG2XTSo/j18OCmSCrJ/xjnLPKkQJWJho5NP9Gm7Rp1KVypskXzNl3eQ BlcDnOovuahBIylrU5EHgTsLgaStb9Sgvmrm7eFkNXAT4+i7TOBhVXJabuce Yl17k8ettWrg+JNPPbqWBpvyTxQd8Sbq/ZV/38uLNDi4mj53up7gEyPBZry+ xDzw/O7ZR/CsM1qXq7cS8yhDlvHkP2IOiSxUyZTzE/zHYfnXwE1VaN3sbmH9 RxUi2W+/ZLuoCiZ3h58kr1eFUW4Z7d3ZKrDG9gfFz0IFrv73q4q6muB1O4oa Vu9Vhna5JbX9z5Rhuv32JSsPZZD/eLHKdbcylIcZGmqEKYPIvy2Spv8UiL6r us+xWB5cahUn6mTlofqD32GNQ3JQMBZt86BTDlymDe9EF8gB2+aDa/Nfy4FI Bblh/gEF6nY8amskviv+wzbamCUPBeozgZ8J/twjrj6aGikHYT1KIuuYctCW 9yy1rEgOiqIqywbrFGBe3uOmoYEi0CgXT7+OVYQh54jnDoUK4Ed+vxy0SQEi jrQNn+ZXhIKAnh/io4pw+tDtIj+aEhwT9+0uT1aC8vR/QYEMZXCNq9c4+EYR mm1nPzVHyIN7upuR7lYF8LKKeLrDTAGkp6KkPu5UAqWIhwpjoARhBrbBLvsU 4XJfmzqTWwm+COlSpGzlIfZOrMbGcQo0X6ri8H9EgZ9tN56W3KaAuEC577Yr FHBZFP/ZTZUFEQdHqlGPLOgyeKw/PpGFmS0RLKejFOjwq3ge4yMHN5j1Z/Qe yIHvisxBvzl5mOU1ThH/SoF0sdwmf5IcMDK4ZwP55MHbZYscSUYe+ldFWzlZ ErqDs1GSbUwODH5fT+6yUQByS5K1GLcCvD5ivqfOTR6qikQnBLvkwZXH1Fgu Vg5Gzz4SeudAAdLpe6RmWQpcdBUYLxmSg3Z6xs3Lj+Ug+dvciqgLBSzmVNZu aJEFmZZjdY8ocnA5UjKt6Kw8dAeZZifmKYBan8x3F2tFuMRSLNxVqASuupIT H7mVYfWn5rrrGwmcTDacj09RgZJUYdkNB1VhWp80NXlHFcg7CoY296jAJ6UD IW8+qoDgiChpiuCNxk6+Dtfvq0LbB3NS20NV0KssLNxE6IuApozJUKJeV6xT 3UhPqHA7dTZunpsGCWdV9nt8oELib0V2IS+CXw7VmOpwqEKtE0Wel0zg/tIQ D/m6ClR0/pTeZqMMl4V9a/7zUgJr+4sPovcqgr3xE2d1CQUo7a7csDZMHkQ4 6TZq/fIQl7jIuY5HHtJ48vZHf5QHY8svO5UInRd8Qc8pgcCnfEHvfbckOXjv JmF7Kl4OEqYnJ6td5eFozQTVp0Ae+BemX4tul4OJGM/JkFQ5YJWqiDnnycF1 E9/E9H+EHdOcUKl1CpDztKVqT6wCZDr036u+Kw+Xf3WYDZCVwMjum8u+50rw vXUxzixTGVzuBKz90a8Mu3ruR/pbqYAY7dfxjv3K0FY0zLHhhBJUMHt3pRco Abdm3mzwWmWwd5M3KpxUAMaHQhO+DkUo6crn83qtCLMbGd5cK4pw1VTwG/da JVgZPvXjTpUiHEgTGmIj6kekdOrWey5FeHEljJupqACcm59bJ5HkgV4UffCU ggJQjVNYHdfkoTy4MvPqFVlo+VSwM1BDFurjsoyL/CnQs3mbbJkVBeIErFZv rJIF766S2J1HyZDMnqFe5ysLmY5q4XPniO9Th5d3HpUDbd77aZXNctAlvpC2 gcB7IIP9XlO4AqTr949l8yoClH+TastWBO4DTrLDS0pwVTmTx5fQpT2X1g9H uCqDbdyFY1PblMGjIjr1oaoSsDX2z026KIJm+993X6vlwVCsHXdzKkGyj0O6 2TplqAvV/R6YpQL9uVMbS2RUYaOfbfLfalVwOFmSLkTM/dDjqTtCDlFBt01C wKyaCmew0bNhLQ36PRPvthvSwMTl4p9WYt7PCnmt8OkR/btR7o8FSR38KK0h u3+rgfeaxnw3dnX4pm7DefqkOmynbx369U0dGtoZwpUqdPhoyeebV68BENtx xCVTA1Ym91uLF2hAo5nokfxbGiBdv0X0+1MNYDOOdrt3TwMcVw9YCRLzz4Gj cvvhZQYsu09ZcYxpgtDE+rt/ieexNKmdA2u1wHPbLl6ZT1oQ6K1vHFyuBVNb HFbpZ2nCC7ZJ162pmuC/dPmgdA0DFtNmB6aWNEBlcvfHIzQNmE7nTz8lRYcm WQW164/VIPx4z42OdkJP7GxXSnCjQf3Ok6+KRwleYs3JL/6Y0K8OtNNfCX02 eJX9grSvOmgOzchmEzyH/xK3wAkVdbApUmONEnxTm7ScmnOL4N2vLy59HFaH wgSPEEtCV7tEBpRJ0tWg2bQpS9eUBhPyr7bMNlIh+fzeDUkGhI6PaI/liiD4 V/HwV9ksKpB39lK6CR0UcUfvzENiLocZpLwyYFHhp0Xw+qxjNJBxGNW/e4cG LUccm2qk1KB/3G9WbIEGiqNdodPyatAUHZmjSPDkuaWPClHP1aD6xiEhTxl1 2MV3jxSfoQY3vL4n8BfQYLHw8s7V62jwLu5N3IFm4v5310nK1FDB6uT9mqtA hUMGGietCD3MU3j6dIspFe5rb3rVMkb4x2vjGe5DA/8vu1u+WamB9OkYfUPX //PakD/ehP5M7uWobxtUB+9EDSyaU4eMuZ271v2fb2tk149+UAc76bkzD76r wa1lrGkRUYcuFzl/Xl51KJfqKXAhdOu876CTRJ46BBpdu7TZhNC1B3KFK2vV IT3T5ZU8cS5jllxzeI4ODX2mjvGBGhBhJCFfac+AHN8TNkf3M2C8JfGKxxID DM5rukRWMMBuH/NnL4kBUxeezp0xJHRHz25L+zAGdIyVVky3aUCinHWEBsGz 6N/inm34QoeoDx6+Lbs0QENCccTsoQYY5emU79ZggC8ldEMBYW/NlW7RnFgN uOv5zIN3QQN+3koJEqIy4Oe7vPGTUwSvzC71vZPLgNzj5mubZTXh6WRk7cnD DOgtqBiQIfRQiAX7kD2hfxaVuB/s79IAsuOGTJ5/BI+siGH/6MGAAotf9UIP GCBO4ZC6PUfsW/Tm/WSqCfaBtQpRJzXBBNr43HZpwdakcqOs71pwN+uGzkE1 behQb3C3mNECzcEpufdtWtB1IPfmn5vaYHvQLkZjrQ4IKIdIvyHeT/956GYQ ow2ffTd/cPHTAbCrtH11TweExMRPvBzQASXdyWhyqw5EzEiMcPzTgVfxAo5z QbrwJWLDCUeuVVDg3n/zQbou9I7Up5fE6YCzdclHi24dOK+a0qbVpw0J0lKM NWI6sKAX6Z+9Vhs2201uWjykBS8/3xsV3KYFziMpe3e3a8FmpgTPw1ht4H0e YNOjoA3sinUiVB9tOPLdqQYFdEDqxmhj4h8teCaa6KDTqwWKgcdJ1lxasJ3N pEJbSAuWT0iWCNC1oGxnm0WPvSZoy4p6XizXhG8K+ba9AZqwhsnXc3erJjEn 9wjJfWPAZ4+XORrzDDjW97MhiMh/SKZS+VllBug82GTieoEBp5r2HfoZpgEF XGHfNMgaYH65U4mLzACqqXigWRwDkvqNSpfuMOC08iW7UFcGCGlV7NuUSeSp s9tfZ5YBB2s55r9pEHz+krlPA6F/+3+GqdvYMEAj/NtUzgYGPAzLHmbe0IAS q1+fr+RowOWjVxtyWQwY/fXNQec9A1Qqlz9++cyAzr5HzenDmlCcwn+ag6EF nIm7a4XNtOCi1b+btneIfOtQ1pgaa4GtddRyZpUmpFZrjh/YT/RH69v23Uua MBCx/uhjay2gFG3UtuMg+qPjgcRLnppQWCLEve4rA0q7bm3frs6A4NPB3KFW DCjOLdAucNeASfWk+6sVNID/ou7dOUJfCF0tBp1uOpgI8SttJvStgKW5qnGB OihdeNPy4ygd1PYnlpulqYO59aeiOaLud/haXd+9UR2EtBVTyd1E3/l0Pu6F sRo47y3YO3OD6DcT8YX1JUR/rdmLOn00KGs56bDsSgOr/hr9M4dp0C1i1x0Y TCPi+4MlF0aDJ/w/B7+m08DurLb+ukUqCJnP/Oa2pQLL487OibVUYK+iyf5j UmGizNtIgNCtNw/rG6UxqJC1aybB6K8qbDlRdqz1OMGfLt36qJVMhan/+oaU aDQ4L58nFEroDLUoq0LpESokDV+R+H6NCsfuB/d5E/05dmIsvE+NBsA2FPWK 6JMnmJRtdRE0sDQ5qdA/S4WFTz6+IQuq8LLB2HDjA1WIaN0wkU3M15cFsWLt nspQ8fhHxfEXCjC8Vk+3fVgO5CwGlAW+EHM588FQ6W45EPgUfCePSYHLWdJc rwj+IP3nNVd7iSzwZ0ZJxPLJgotdukrsaxmw1n++w3ZZBvSlDnZvfCUDmkuv S/9rIAN7yRo+HW1ZIJFvfthC8OnwvaULB0Ip4PjG4FXnZgosctzd3jZAhtyj nkY+8TKg9HNAS3NQBiKLKnh3HiP2ezc2J/TIgH9K6dtdkmTwu2UykNguDcyv 1IyYO2QQs4o3OHVEBrZ6lL3sOEyGglGHKbgkBXa1MucVtkpDUnNRzU0HGQhJ q3koMSEFxneKku+oSMEu+erwXpIkPBfpCuG1lgCP1uTiM+MSoCk2+f3hgjhw CzbuPDVHgq+ms8cPuZPgvKvZg0/VotBQH5F47aYIeL98QPpoJQimUXsD2YoE 4S1b+F+OSiFoyY/P7YwRAvJoEr/jVhHg1N2vJDQjAmR/95MC9iS4eyTnus11 MdhgE509kSsOB+NF35dIiUE7NXzvoUskaLzOkbRBlwSRw9obFmRJEFCTpWYd R4Is5pj+u3ISpOV2eG2JEYUeRUP/k8EkmHSaYtN5JwJFIX4nbwiLgOJIBtXb VRCo3Ez5jc7C0H7yz4GgCmGYiBtt+qMmAGJfhW4KvuWHrZoM7sUiYVgTxM/p GiYI54po1f2O/BBgpTMdWMwDvn8+lKhXcsPKU0UGN4kL9sV7Ws7Fc0OWYuxV 1T5uKCqmLezt5YSy25XvL1G4QCufbd5xiQMkNg7u/3CHFwZc+xRIU9wgvMdH ji+KF+4sSoe5f+KDqGI20cCPvKAk8LKHX5QHkmyk7mwc4YSMyPLHov/Y4LTL XmWvTA4w+sKTtSuCCwI8bkdlx/NBwj5Lq3gTPvix553HqAofzChrXVOQ44OV d3/zuR7xg9dWm9B3dD7ICGL76buJGwwmvj+9pM4HScYOwYbNPNDyaDRF6jI3 xO6RLtp6lx1IFmfGMp6uMGNpdjs33WSHhOcuXGvK2KDx68pJyWI2GL9lkBhY xAE3t6z++c6YA3grSvMi9nFAd9bN28W/2eGs1QmHN/HswFsQcph5ZpHp/YKv I3d8gll+JqzD1W2Q6d29uXjjYCtTWE/v/tbaetYO75D4IIsKVlfD3/Z3x0dY rHXJHg+tJlmjyxnsKz8nWe/vfvDvL59jTSoWmd60W2HZPhrwLavlwOlS3/qa PE7cRMofsNLmxaHMi0/vsPNhhzxesHPnRdL74xdGBgXQpDAzaihDGJcvrn7A IUBCm7GvDtrFJGSfabt9MZiEU9qGz2P+E8fOdSocYVGSuHzPIOTBcQmMG2HV TuhL4GeOUelVcWJoH1jmdoclhlnTW++t3SuOJ6D04IicGDYmhu75KiCBqbVt 8w+UpBCEbDc3mMmgV8aRTM4rZDx2bZFTd0wWf9LCdsQ8oqB/nt3C2X5ZrA8M qeVspKCcc2qw/TAFzV9OhXV0UdCo+t60TggZPcQOkjUvyqD2gw+HXobKYNzh CHvfPTLIZfuVDTZIoYfaQenvn8Swoc0tPfK4GBZq6x7xyBVFNN5jNN8tisfu rM6vXhTFKanyO4qriHuXBoQ3SJDQ3N2m5EKCMF7/ZaTbtSyMTUG1nnUJJKwZ 3/bj2wZxlDjfv0JXlcDHY/J+Tr0SWHB5948WcSnMX/g8ODwuhY+jj9RvmJbA +l/7vPZTJTFu3UvDNBUpfN25yidcUAbl39Vd+fdCBrlBW72lSRYP2r9/uEim 4IY+jusuwWSk7DcTYq8hIzlA5oTYVTLa9s2ZDE+TcTv/KmP6BQo+nSjWltpL wfU/vijoPJPDHTpRLcWviPi8k2ryy6Rgf9D238rqFLweEMg0NaBghIIiOdBd FsXNzgeM3Cej3obgq9NbZTG9IlkyM1oWgyY8XeuGyMieE7kl7BQZv4Qak/dW kTFxbJVi4jAZP3ud3hOpKouXnwdLZBjI4jmb9rTbVDmcrMkpFbxPQRWCHx/7 LY8muTnqzrqKmODw1+n5NQXcf7WM+1OdAnYozu1O8FVEpsvJksd3ldAun9dx C10RJ2q6b2TXKiA99Y68BcphrOpx17XRcrg+x+JPuI8cJg7reR1NksdT+SdE V7bI4SnDCpR/IIuxiVnFF+kUDCCnja4dlcV3s3I964Zk0T7Warzriyxesr+1 4WYYgY+L+ZVvF8jYvYWpumsnBTvDNTlaUmRxcNtA3xJxztHZNY+dbsrjl7Un 3412KWBlUUzPYRkFtH2yeejiH1nUDApZ8c0no3HhL94HtjL4/vnRXWmrpJGx 7n560x5pNBQ71Lx+SBqfXKk5FZUmg3wZuTvXdpJR17F4KEOejJWjM+Q97WQ8 4pXtMhpBRtGyVWDiJIO9fh1Xya7SuPwnZnwqThr9Lxux+tulcSSh4fciHxkL n2zPj/Kg4G9rycozRD0kLDVnvqqk4GyxSxZ7mizyf6shcUhR8FbEhX1XEilY G3I7e/MAGU3Yw9RzO2UIeJfPPvpH4K1N5L/cYCnc4Zd7NiJWEoVLjIvfBEtg 0cjOm4yTkljie/PsHwKXybKrNq5clsbqhtFpzkfSqCx1YWdtsjRSjqf4r9ko hc+qxTmquKSwzEF19WknKcwKvHYoQl0KaTatzt7hkvip5kbbIlHX7wUmM2/R pXE6uvX28DMZHB/41/ZsFRmFv8wtLRaScWRnyzirlsDXEelsxUEZlNYwHDcS IuNKC01MPouMCzfYo3dXyeLwh7HJwlIKxj69XqR5Vx59b0bVisso4sMOreqq 8wpYdvFV/Nm3CijRkpZV5aCI9COv3D9/UMK8tt0PjJ8pYY+PyEuDy4rYrVa2 rkdYEW9U/TNhW6WAJ566nYi8Q5xnOMnRm0PBjl9Kk372sjiyhZnYUkLkJy86 /CNLGg3cxet/csvgxZg1Q0JhMhgWSBrZniuDl2teR7JZS+PWHudyuRjivqVV n252EfFKcFh/fE4ah0Oanrw5Ko1HLZ4nk65I4fWbfwMbyEQejv8IubNNCjkj FBZWqqXwrf+be24uBI4anbOL7KSQu7VZfuiFBOae9sttFZbEZvbn68xyJDDZ Tutt+C9xfDmuJpU0LIZXWQ1v++pIWNAbrshpKYo5u/JcXbYJob+T03+nRoTx uL9lPUORhGeav9jYSAujZ5OHuXe2KIYXhToZjolh2eVv6+6eEENNpTfrtwaL o7vWpcZVfeKYOi//9WCMBNbZ1z6uM5XCQmnx8nACF0oMs+7i3+JYL3AvPvmh GHKre13YFiKGdx++qfnEKYF/P5gx6/aI49of68ic+uJ46t/Is9zdEhh5I2Rg vbsEbntcsLs8TQIvji7UzraK4+jV/DRrFQnsPy2+z6NLDM9lvXW1uyaGVwxU eo+Ni2NVdDHZVVwCtxwU3d++VQofjGxr7f4liXm9WzZx3ZJEnSsifsZzkmia tfy7u0UKy9Xkr5+vlUI5874L7LWSaFg/Dg33JdFlv8ntoruSGHDyTLzBuAR6 2m4lM+9J4IHpeEvtMEk8INmhMj4miRGkgvVcStJYbx23an23JGornVC0+yqB m7RTluxJUnj4ztw401QSX3UX7MzvEsdtIkKeBxbF8OhU8WhQgBielQgb6HSV wN23SKzDo+LEfHU3Ic2LY9pS/1k+LgnM2/hf1kq9OG46+/35bm1x3CHM9n0n rxi+0x/7c4GYi79JjtK/j4viedEDd77/J4y930+EfvAXRBL3+h3V1vwYK9Aj y1gjgIYh5uvCDwliS7SOaXa1EOYkVq9yNRPGXdOttX1/BJAsma0iRhFEmeqM YrcAQRyJfec7RRXEAE7tCJPdfDgk5OcpQpxHG9vLe0SFH0cME3Maz/PhUZOJ zE/budDmdZ5qnzIXPvvwfaUknQff8lUeSKHxYIlD++3XObyYOL32OL2WF08c r9uX4cWHwRdCrz1w5cf9eT421tECGPR6Imj3FB9Wvr49ccWGH1MlOgKGI/gw pKfv1rIpD6alVE7zePCjWtCnLJU4ARTRyU80LBHA6/pCYfW9/OgU/ado8bsI XraeZYqFi+EjRW8b98NiSE9MfPjcWgz718yogCUxx31G99Q5i+HmMMEZZXcx DC0Zzr31j4QODaJXXtWQsDRgaPtYjSjq+n5RcswURqUW1YUriUR9DCw2CXYL 4C6/R3W3swXwk9yqnXEWQgiXp3eqcYog6ei16tX7SHi1oe7xR4YIejzZnL7q kygqRgm8DY0UxoHjr1PLHovik291XYWdJNzTnDmS0SSG6QErWUPD4hi4/P7D 97cS+PZ7QN2llxK4uNdYlc9EAh/0H5vQGRfDa3wcL7ILxbHbwG6+45442lTB eGuCOHbQ0pKSCTyI/fro3lYlivMKlKtp+ST8FrByfs0TMbx5JqX7T4441u53 Opv/jYjHf70eDAlJVGF68po8FkcRwy2C56rF8L3dYa3WLhKmPl92sTtOQrNA tT/8imJo6bFt5W6rGD4vuxKj8VUcv+SGcnI6SGBFe+q44qgEcn86GjfKkEDz mL8agefF8Y1/Yz/7ITHsqTjfcpDgce96De8JB4njrzoOfpEJcTTWDzLcclUc 2drsj9z5TcK8vp9Hi51EsNraouVgmxC+P2b9uVVGCE3mhsXyDQWwJMJt9yNH HqwnHzTOcebBc45RVzy2CuLDB/dG7r0g8vAiYt2kuDA2DCas/XCXH/mFe71F nvKjhcLSSw9zQfzUssVeZJ8A1u4xejK8XghLTeMmf80IoBKl0b2gnx/beLrk rgXzYfcyM+q8Py+W3EhuKnnNh3HvAvb7ehC4z6vlz3TjRom2DHLUOm6sfqgn eaKbC4v2NvpkrufGY/teZeUUcuDBmvNKN13Z0fbl67j4Pg4UyRKLrfvMie9S JX/oMzhQ3tTPLMaKHdu+ygVMXefEQHprW2UDB37roOmHBHKgX40Pu2juEuuG 876Lzhn/WCMPjyXU3P7LesFm9d8+10mWTcHRvzMfp1hv/z2J2fVnkvWgRPvE 4PVx1h7yx4xdaUOs5bv7X/vcH2Z9q1tr9bx1klWh/FBI12eUNRRXcWPHqSli HS4Wqc6wXj0/LhEcPcsyEyzy1FObYj1rdVbfnj/IGtluXR11sYelGXcy1yy4 j2V6LP3HLb8hlkBbuU/10V5WWKlJvjH2sdp+Rv4h64+wPJI84jylJ1hiSQKJ 1tmzLPPuxz68u/+xboUXU9Ndlli/xSmrvvsvszTbXzy6X77AClI8Eeqsx4ZJ Lq1ltZKLLDvrV+lPuWZZpcsHnyoUjLM06mm8iiGjrDUSCaNX3AdZycc+S2k3 dbMSTUsdjDJ+sopX4lNTWQ2scNnPj1etLmIFaDWd/XC6k6W96Fxn/K+T5RUW O7D9XQvLWli3NEytkJXb53jg05YXzFgrG1mbmJ/Mkag7zj/XNzK3FkpFhSbd YibPpTZH5FcxV6aRq2lDK/N0X+xIAGcv09n1z9Hfv7uZVRN9vfs/9DI/tM3L ZJ6eYKaHmCRou8wx2f+0rwzfWGHCV77b7YPsELu3deDVDXYo8cz/0MFG6NQ1 Tnp7LnGAV/xLj5jXHMAp5fOhYi8HOIdcEj/GyQ2v9jduJf/iBG5LmXr9I9xw /XO2RAVwwxHPEbl9J9ghmv1aNiVohVnCM5jC5bnEpO4qWXaOYYe2pO/GAdVL TPFtqaEXvVaYUctxa49MLDPtjf9bruxYYUaaxu8u+MMGtUufGkovLTKD18T+ kX+xyNR5W7JF6Msi0zDB97D8OBsIlQ1eCKpkg2bPEtGlV+xg4uE2077ICUei 8k2+yHJDidvfp9cCuWHVv7Qg94c8sP/qlxuvO7hh6b31xqlaTni4W3bp/e9l 5kftk6+HVi8z5471Dq+9MM+UmnrGQ7kxwzTcKOHeUznFDL/04Jwe+R/ztV0S 01ifAxaLlbcOTHKBgJFxHcmHE/i3XSr8I80BSrdv2k4w2YEVu7Dn7SZ2yCts vXCynA1K49341qcvMWm3LqsbEfZ+8P+qf5U2x1TmCxc+N7jELOt3dvHbv8K8 fih04dFbDtjyomh7MxF/N2bNDFcAFxx7uIY7+DMH2JiVcHzx4AGdi3clG4V4 YM/j3dvyNnNDYdqYrkI/N1TamZBDioWBTWL+WVG4CER/rXZQXisElN5jpWPm gqB/RGLI+yA/uK56enr9iAAcoR5lPErgBzWJgreiTTwgtPytk+MQD/Al/KSM tfFBw57/Jsa/CEJP+OsS+Xx+CPnm/na7hSDYqZ5Ttt4nBI84tfMmOHkhUMbA 4uU9HjggKVucM8YNsdvd+1cEiTgpcnroVHGA/fr//E/acMI77kdDIVFcMHnP bahwnhvarh/7rGQoAL3fLjj+uCAIl0uO3CIXCEHHwimtpHf8YHz/tt7cbR6o v3nsoi2FE1YN+KiZcnOAI/na84G+BWbJzWsnrb8uM5/+a4rdtf0f0/TZ0Wgj 3WXmOXxZU5a6wjyv9Td1d/k/5u/uhH/ituxgtrKq2+kNGyxzuJjwvl9iBuVm bH5rxQaH3YXafY05oel6Tpl7Pyfwrjt/dtiSGyZd4IdhO3Gv74qUqgIeGNp4 +lPwHm7I0ttWHJ/BBZtvD92j5nCA4cEn4WwDy8xp339epRUrzJ0jggXq/CvM gZJ1n6X62GHDpeU1RsPc8Jk5k5ZYzg/TX/yiPD0EwfbGrPUteWG42yT8faJX FEqv/Eh6HykG1xZ+nFl+Kw5STyJzP5lIwpcTVOlba6UgSyM1Zf9/MjCz8/G6 77yyUBttod/nLAs0qrzD6i4yJNXkNoaWkaHWcI/5iXeyUNChNs+hJQu7orOZ gaPSMKJ0J/0YpzQMKe02DP8rBU+dTolM9kiBfzIr9dlDaXjvURIQoyUD69Pn Ex54ScPRmDdeQWeloeDVLYVGsjS4z9zfk5cuBedNW/coMWSAW/PfGw9tKZjJ b+aS+SgBJxSEntsFSIDE7TNaplPiEFDc2hhiLAYvxzSL1viRwGHGPlD1CwkM hdvrXf3Egf3ldo2SMDHIPiKimDYjCi4+bL4BY8JwlX8dm7auCETliL6tleWD yOYm1ys3OKGtM3/gwSNOcCbnNkZSeeEM//qBdxNcIKX+O8/gAzuM+r1b6srn gthk2efXJvgh4OI8Z/Alfqh4va45YAsfTP/+GEmxE4DwbRNxiWf4ITc8rqj1 Hx+8ZL32fbiTC76VHufqs+MC3emaM7PTfNBV1el/rp8fXsi2dDQ58ANX2Yb9 x+9zw629Yz/J2zlBapHu8WonB5Ttmkn4JswBAvbTh/81sENaf0JEgj0brHBN FT4vX2baymU4W5ZwQaHMmOvtn5zgdp1rreiaRWZJ6ZWUvJA5ZoO3RrGr3CTz rtTyjs1vxpg9+oLP+LiGmMExFdeyJcaZD6aP2GvV/GImHR54sYV7gJnT3xEy 1jLN/H3C/smxsDnm3XwndedDs0xSvsyisd8oc9N/J/oKK/qZibKjF6tV3jHP h/5si+CpYVaPJ277cqiNRbdLTP3u38PKp8uzdp35zNpB/2CQWN3Jchet+Scb OMh6WWiZIik5wfIWVpoy+DfFOvsm0OnOzimWzl+6FmfeJGtK0oku/X6Bxb1J Jn7n9yVWEjDMv35nQ48aZqvSf9xosnopVyuaBxWbhYK/+fNhRfk7daHDBC/e 9/2Bng0vtmQ3H5I4xYuMWb4rBc/58NHMySDVXYLobESdt3kujJaFY17HhEn4 lpc1e4olhBMKVxQG6cQ6ee/lVRQhfJES/bpvvSi+PyRQrvOehEPSVYuxe8Ww 2G8mMGMPCSeP6p1f1SaKm+87TDNURFCiNUJB7JYQ2vGIzFW9E8SIwfU+D0aE UOGwtKIhGwk5o1M+0j+RcEu5Yt7BoyQ08tB6S/USRZ/+nsESfxKSuq1V47aI YbV2sOGnFHEsr3xvrLZaEn+8KnGfzZTGTUscAonTMpgVoCTVuoWMxmLDt70i yHi6y/DAnKIM5h079/DCOWkMCsvovNErjRlbd/J3HSHjWab+FZ5GWczLK5Nc viSLXcmH2P+OySGner595Rd53P/wh7OgqCJuVUwx/Sksj+YGKeJSFDk80fDm efqkHLYVqzYc9JPH45epsuighPofvBdvcihj+vhm27eKyijBdmtE3V0Zc98m hqoqqWC5/Zrp0VAVVDnMLVDEr4rTUUbXCx+q4JVPBb8ev1HFgpfHVbnKVZF+ fSTVToKKx4xSRq6FqKKg80qgm5Yqrkkxc7C0U8WUSz4RaT9U8JHQa85n3KrI bKq9XSWtih8eyoyrZ6jilDNzHVeMKu7KWZcy6qCK7WdvVG18q4oRc7urNC5Q caVsbebsChX3fWrt/ylOQwFfa+6pORoO3SoyON5Nw4ARSuuLDzS8xXX25Acx NVxj3Hyg7jUNlYyXlzaeoGHJdRhI5VdDx3SdENm9augqqv9fRZg69tazkXTZ 6Miev6amhZOO3B2WdVOBdFz/9tyWsb905P2yEvmzhY5GK6eKS+Q0kD/YSt5P XwPtfdnPpa3TwEQ9Wip2aaCIU7DqrWwNdHvwYMz2PgM3V3+wfpzNwGIZwfpL HJpY+/DJNlYGAzm5fqpEiWliv1LR+0MVmliesrIQmKCFnHWddxgDWsj8vr+h mVMHzX0P95po6mL/7laB8IOrsIjCt/x7eBXS+b/tu2urh7EavHJWocSzTAxf R+qhKvnr0/Xn9VDm6YqWuKI+1muW69T81sNrLhIPuNr0MErvgPEnT33cdz+m ejxFH4sUP/Px7DLAkmzwWYwywEnRpz0WAQb4hHGs76iZAUZxa23JBQOcFR5k 5Gkb4ItrNumBmgZoEr7l3GoXAzwN/ZIj9gaYsa627sULAyygxJcG9xrgye0b MpbTDDDTWMVNo8YAD6a61ba4GuC70WzjZEcDTE8WcVr12ABFN214WcxmiEHN d+9OiBhiRf69F31WhnjnYP/RnwmGmFRo1eX73BAP3vt7b7zWEAP8k1IK9hti cVGTXcsuQ/zLeGT/MsoQR+3G90naG2JZ3d6N57QMsSWqMW1y0QD/CuQnJM0Y YEhXu1voDkMszxa2ljQ1xDOhdZTPxwxx/aquywzinKaJi4o/iPez7kNKSusM UUkw5KLmakP8GKkrJZpoiFaBwQwbwu7pPbbxTU2GeCNGa3tQB+HHZYUheGaI yTxyBaOdxL5Ibj7RDEM8d+lY3+t9hlh6Um9j6iFD7D8jvK6cRNyj8XPX4oIB amjOnmsrI+K092qD0HEDXD/wfUuYnQG25Gxv/25pgHyX3HvpqfoYlv7dzk1J H8/Lz9vKnNBDxauujav59bB037O45vhVKOM/vGNJbxUe95o1tv2li/q7zSb/ yK1Ctt0HLHSurcL3K/cdbZir8Bxpqi9lgy7Oy0uOnI3WQX2FC0bOmjq4GGav Le6lg4Hroi7IHtJB+cLysj2ROughFEyp9tHBiTo2jWNuOmjzyd5dxkcXM0SS V8pNdVH4sIcqQ1sX6/rjVhe26WBqStenLj8d9D+WL5z5Uxs9DXYqJ2Vpo1+G lFjbDuI5PFIYmK2DenPF+907dDAseyIy/ooO5lzPOeWrr4uj3txR5+Z1MOKO wC+HGh1k54nq/vlRB6fdtyxurNPBd5HUjpEyHWRt3Jewe6cubl3NqbhdeRXq Zz6fuS2qh/EbK/Yl2+hhFnd021CqHl7fPhOv9EoPf37484/tgh6a8mZajn/X w57Ypt301fr4asCu/eQhfSy8p26yt1gfMxf858xu62M8T4iPT4c++n8P5Fj7 Qx87OGyP/B7TxwLHhrGqQwY46vx26ZqCIYq/HfiiM0rkMen3S+t5A3QeyjXX BEP0+P57g9oVQ9Sx9LujEG6IbeMTDyarDZHvGnvVhT+G+OXC1EYf6dXo6Vn7 TDBgNWqEbvuvastqHKzvzH61fzU+Fb9bcLFxNfYoH9q5omeEunvl2e+uNkK5 TH+jJHsjtLndFjthYoQMMvvqPlcjvK6e/ErsgRGuD/nVK3DZCO83R4p5thmh L3uER+l6Y1x8KJYe32CMVOvJnzBjjL67dPasPmaCKzvoSV5XTPBR31PKUr8J nta+Jj9pbIpvO0NdFO+aYtR2geHJQ6a4kvuYlJJjiskbnc/wPjFFl6x1b0UP m2KHe2ieyx5TXLNDqPREginWei9wfHtqim3Cc9TXSmYYLOf122udGe4p69nY ZWeGi66vqqcMzTBz7uflcAkz/LGVTU2+3hTbO8vk3qaZ4vjl+uJSihl27R3Z cMyVWH/e4X0mwQyDJjbxKUaa4fk7Cn832Zphbd3nqFxLM3Th2/PEg1h3fkPf 83C3GbI9T9fUSDHDM9+UzZ51muFPkgz7hlQz9BvZmnLjvhl6fGpduIlmGGEU ZDKcbYYdtJ0nb940Q7Jp54mbxDn7HbNzrJ+ZYdt+r1O8NHO0OXToEWmzORrt jrB5ttEcr0+Z3BP3N0eBuNVw9qw5suxcbk++NccjVheatz0yRz7BkEKPbHMi 3/OVEZfNce6sRulab3Mkb4j+MHPOHHfU7k9/8cIcpQemJrkLzXGiX/X9uxZz 3O5+wFzqlTlm2oWuDbhnjrR++WNKZAu86xhqJ8hugda8nMExaebIWyImwH3B HHUCLp/UJfa7h9NdKmLM8czMv89zIebY9f7Rf38czdErr5rSpGWOB977/XzP Zo6dcVZcQxRzXHEruNlJrHucPrQjwdwcHbZdqlvZY462c8denZUwx+gfTTVm luYodWOB9jXIHM9HWCg355gju6Ttbat8c5RPa7JxqjLHFwNpkw/fm2PiBzdR szlz5EpPrypVtUCT05qXNwpYYFT0P1Myca/kgXzRtnRztFsZ7FlNfB+XKDnb 20v4f8jsUilhf71fjawP4ddPtfbuKTdzdG0ZTMx2Jvw6f/5e8HYinvs//ntE 7Cv3rPp6b6sFrvnFL3z/tQV29Mfvc1qxwK5jhpRHsxYo8PM/QfKwBR4Jk6Tw hFmi30RPU2SWJT7RvBPsUGOJR/49LGv/aIny62QLyx5Y4rT9pxD6BUs85ue1 N6/MEgP93ScORljiJdWovLpqS1S0vj5RHGKJ13/57ByqskTTAY758R+WKG4x TG/XtMI7l5y5pPdaYXJhi9fDq1ao5MMqdUUr1AneeTEx3wqj/5u3Vta3wrdj nY13GVYYMlxfbcNphbbHP68fULHCpNTx6fcDllievzdoF5cVijVh5f4Owt/T a9enTFqigadm9SNZK0w3WNz0xsMKX/73knIq2xLFqC0Dx09b4jvKqcYrty2R cwHTrXdYosS+M+YXFi3wVNnoyIPLFpjUfEiz+qoFqphS4ps/WGC7TGri+YcW 2Ll5hsfvrgXuOxr83DvMAk2D7nK2hljgJrOgCHe0wA30lNcC/4h99y8cf/HG AtPqWCKfWizQmebQsXHBAlfqxpqY8xaopqxl1KRiie6J7CcbVC1xRsutjsOb iE9DJ1pqWaLj2XtMkw4LnC3M+feBZYGZRl/9Oj0tkE/1r0e7twX+UNv/5oy+ BX62Hr4+ym2BnpcWBH8sEflvmqItLZijmtP25l+GFsi9pSyZ/s0ce5fIZquJ uhi2STOLIvDxYvT3pOhVczxl6xhTuWKOSvuzGG84LHC6LX5RuNMc29l9Djs1 meMd2POL/tUca+kiqk99zDHixn/LJBdz7L/0nGpT/X/8JZ+Ll7bAiDOwq1HM AtmFPq8PGzfHyQtLGVv3WWCBifv6TQkW+Ol+cgTXKQus3EU5XEDgb/w/1Vjb EQvU1xoOKHK2xHCUZaTYWeI5F7Px48TTll850zTeEtcYNDwkoyVm7vCzXtVg iXv+V6GVh0P9dXH7vlN2hjGrpRnrjG0OY2yRSkklS1lKIUSiQiTZslVaREl2 iQiJK8pStgopSeIXJSXRzvt9/7rPuefM+Z79c+7zTHRJuAOW367OZNlcS6xO snhNlzZbILJY8cQxF6xejI7d2RlmgYIbJkPcblogx8oZsx97LJBDjOvzLow/ qBArsw2j1Xs40cwcC3TmJ/+7RGOsrsjrbTLZFmhTzoUrp6UsELer0vVjYIEs lxLTVLAztCT/kdtGC7RgFrzWhPHPDAW3KHSao3j+b5Iqw+ZoS8a+Wv4xc1Tg xEM+f90cPe3ZGN391BwVbcr8R/E0R8N/cn5tNsbqT/VVjfYpM3Td6VzWYRLW d7a/9bYzzZBguOsz5+NYPnOrwri2m6FN8UeOv8TyG7muER+7ywyFUv6MrmNh 86Hyy5WgCVMUHkH0IBqYojyV0dn1X5no5o5+/KtJJqI0XD2p/x8TBeyuuab3 nolGOA4Xsj4xkdbhg9dFJExRzaFyNrWSidLuvid9fclETuslpda1M1Ftfq9D /V0MJ9oevosaZGL7qbxwHN4U7bhX+GDZ0RSJKfZ6mWD0is5Fo6ePmSjRcva5 UykTMbxpc72fmWjzv+MrqX4YXv03bVxdy0Dd9PdeGzE8onjur/x6mIHetlhH Jp1gILbftjcol4GiHv955prFQOFpSuKDGP6VrZw9/e4UA+mFcG8qucBAASQL L+tlBjrJPUpMdGYiiV/cBlssmCh66XaX2UkmKpU6PsOP2TU47RF3Apuv6/zp CzdGTFGg/yS9FuuHa+PHcUpYHRaPN9QW3TNFRycXLili+JN+MO5nyzATZfA1 U+WSmUi6KqYkAIvf4G4ikw/DR2OXFstqRYxvUJjLxYPFSX/JKkeLiSo3snr6 MX+ytsp17fTB8Fl7i0fMHgY6ZGoSk2DFQA7t7tftIhho9/1tt+Sw+2pmxPcQ BQaqrxifDCUyEL/TysZPethpceV5PBYHNydatdsBBlK5Efr23BoWH5Zz3N3z TFSAFxwN5DNFh76OXRrGcGXEf1DjFTbvu6/v90LLpqjZZb/4HmwOxAWb9+Vg 84eVFd1Kj8HqI7//jpE71u95iy9jkrD5tfODRna6GdrdYnjv8i0zdI9Q1rbz /3O/NsSN+y02p5quKPe3myHx3leEHEz+x4MnT7WwuF3MNvcVxnC0zWJghP+z KQqdTs0TvYP1+7KOvy/RFI1P3JB4f5WJ2vrcL9F8mKg+wrZKYjMT0XNPFf3i ZaK6t38vHElkoiFa3a6/IUyk61IUI17ARKzjjwm62J7QN2p9x/8hE8lXu7zZ 9v/6C9+xyjyA1U025Zu+AhNZzcgttj5jILW7SWfuWjKQafmgF1owQVQP3kjN ERPUb2reGIftXQHNz3lDN5igVsm4OpyfCXIK2x3u/MYEBfamTpoPmqDRE4dO JLeYILe/M8yOIBNklquS/fCYCZo/9UCvZb0Jcp+O8PU8b4y2ov27wrYYI7+D NwUv+hkj8iHeaxd4TNAmGzWvhH0myO9F/T5PORNU/bAsdsuiMfKs+OWhFmKM hI21y5ynjNBn0RO1V92N0JmC2KZpZSOUVXcmgEgzROGyYZuYCwboZLB69upP A6Qo4PiDd9wAeSwa3UmtMUB0Qa+9QzcM0O+E8CqJbQYomi+ug73eALXsLsrf IGCAEiE/V/abPspODz7BuK2PCsLrX1wN10eBArKJJH19dDp7K70Ce+f89zUs tmCWjlwGkwI9AunowYAKaXqehtYSFCaZDTSUZvI6f+wxDZmxtifonqYh3pPd H9SnaEjEqpWzo4iGLrvfCx4KpyGhjr2NE+Y0ZD/0NqU1jobKH+79ItG8Ab3N vXG5tV0PmbZERwcH6CH3HRJD7dg7QrnqOomSqYvuXR8z8Xupi25+um2XtEkH idGTOBycDsp5m+9Y+EsbRb9XQUGT2gj/LXiDm5AO0iE2+7dLaaM5zjVSt5M2 qi6vNz/dp43iTo3/VpLVRgW+XEQxQ210jbrWWVqgjS5q/oyUPamNyrvwjwau aCP5YzXaDy9ro+lobXyemjb67GKUpOFNRecTIkuqPlNQwDBdVfsABTVe6q64 6kdGQaV4r94RIuo6MfmFqk1EWtQ7ga5biOhenmR8TBcBSUidlTRpJKJ2USnu wX0ktM/56OXKeDLq/2/PhVYXMmJviw86zkNCpXlyfvsiiKhvu5fUYwMiMnsR cPn9HQIqqH4ot9uBgCRZXBde/tNCH4y6vtl6aaG0ibrP1SkENHDC3WNKj4jS FhU7dz8lott/CiIX2CTkJPhflN4eElLDOZQ9nSQhGeXfvoquFFT1Qyk57iYF 0eo1nn0NpKBedjp5PYOC3HpLj8l5UFDog6UcTTsKutoj8lZhkoyqKBWpB63J iOHFqtApIaOL+umXMo0o6Dj1CQz5UJBym6T7fm0KgqJFUzNHCir4bj2ZJ0RB XmJK4gtyFERV4vmZpERF6aJS/plaVHT2cmuVXDIVJQS/Cf0jpI3EIwzlF19p Iykhmc58Bx2UfOn9nZJmHexd+Wxt5xcd9DXbIP+Ruy4SdvPufhyvi1oCnEXN o3TRtRGzsyoEHRTboPynjKqNGqKUW/S6qEhH2u610REqOpTuSHLswezDeUi+ 6MXsj3SQW/ElI40Lv/HWiyQUaf142vgdCcXfi53L+EVCCdZnnX2JZLTFTGv3 dioFmT6hPHj1h4zMQn7u9iJTkFhkzLqJ92S0OBj030kuCprtK37LHURB0eEh fUl7KUg906u8hkhBsaOLnv6nyIi71mkwchcZFT0tusd3jYR22zf7yMaS0FMe /VqFvSTEV6eeBKYk1OucaFMZTERhh4fqvZYJSD+06XPlfgI6N5ru0ntWCz1G aWFW9Xi0ffeTP+P/NFGXDrbdamqi4Eu23K8zNVCWdIVP0hgO/RVrrSm3xqGc nduV/xLUUVvUOr+RAHVk/7W2uvi5Onqle/xNKzcOzXLWjtgH49CtA/eEgjbg 0JRIRuGRDBzyUBNWWtyGQ2f5xZ72J6ijUNuJ9c/PqyGfzbHcNatqiABneKIc 1dFKEkdhqEIdee9JmN70TR1VzWYEIRIOtS7uG+/iwqF6cbGSv5vVUVfJQe71 mjhUPbnYHNmgjo5ftXqPJ6kj+Z0RCc1jaqh76zfnO/5qyIz7Z2b5dXXEnlO/ qLFHDTGY6z+U86kh6SaHL+GCqsi0NGH2yQ41dEw01HXyrDpKlFXta/+sjihy i/tqbNRRZPrfMudQHBLkGkxkH8Gh/vlGCXIaDr2y3dAk349Dxf+ZOCwex+yz lRtS1MIh7iD+5q4FFUR2snk0dkQJ8SkS9Q+EKiLy+aMrhl8VkG54zfDGBnkU yhDoOlYoj/CfxG8d3rMeObo2vrnOL4cebSYfwq3IIqGACNs5bTmUy/raoK8o i7y+JRDvv5VGHTiB+V17pZGI5KDmpjFp5KphEiDkKI3czchdl0ul0VDajbcR +6VRbL4UKUpSClk+yT87xiuJTB28vTdtlEQhpYLv3S5KowXBK5vcfKWQNO09 7/bTUohQybdIdJdEOHtJmYleCZR433qrl4wEGi4r3Fv/QRy99tQW/e+VCJpZ GTVkHBZEwkFc+YXhAigmayn3kokgkq5syKJYCCC/SEUqj6oAciXUO+jFCCKv +J0K/h8F0I4KrxCNfj6Uj1/e0u7Ei7ieZo0N7OVBIum+sQW1PGhC94f4UgUv EpttnKLacqPXtkqTDc3cyPLW3jI9h7W2gUy9uE8dXChG1LrSuH6tjbFjS5CE Bjdq2Hv/ZHIgFwrojh1S8+dCN3+9zDtrwYdehpuQmnMFEf5Hzj/DfWLIO0jA nnFNBCXOdTv7/xNE8yyXLFQlhHQOc0W3XxZCKdZvDvMdEUJKkR3elBsCKLhi THPnDX4UgzNwFc/iR3T2v9lj0/yoVPfzpdA3AujvoV+DK7nCKPMPPf7IKSGk tdeCFCYsjMyzmsbNU0SR8CGbthJBceQeTIzU/C6K/rxTM1JoF0VhOnpvd+dI oAu2bjt3e0siV79q4CkSR+tni7u2bRBDwu2uJIaoGJreZ+Pl3CWO1qXyr2cT xJHaPYnXPOpiiJsy4LTlviiiiQadvxAvgsKqwrreaQohEVmmSOwyP1rdeWqB qsCLeF4b5zzk5kGmL90YRoU86IdsgqiCFw+SNTAKP/eMG433yZ1nrnIjkQtl 4ZWLfEjBbDkhWu7//+8gRp23F0A+Ze53u8f50ELZ0U319YJoRDXfd/SAMNI7 bBLIxokj2vdhPRd7CRQskNumZyqBngVnf7QfFkZ81bAiMimEZhK7U6l1Asix r77Q3pwPXfYOWJDuFUIdt+pfn97Dj97JshSNbXnQqy2/JheKuNCJ8/YKD1q5 Ufl7500HV7iRn4rTtxPma215ByXvzG/93na5ZPPtaypf2jj0QVlJ1vu2d5c9 RrZ0ZrFCLUr2hORNszQ+Xep5z/2OldmZM/67vYnVfZEkLhbYwRo5KWykWDDB CvI81nbVYIL1/FyI11rja1Z3zvuKLZSPrKPMRNqmwWWWioPiiQaFFdbozpOP tPbNs0o4e0sFk5dYy4lttRY/llnpgU0rBqJ/WEbu9w54y3EBiXK8+aMvL3jk NtILuLmAHkr397bjgXThdnX7Tn4wUVCLTKoXgucF9SPR90VgoT704NZAMTh+ UPK1i5oEZN8TyunWkwLejoGfFjGS8DvxqXvfmCQ4D/lRX3FLQTjnULHLCymI 5UtRuX5TGlwOHJOl3JeCUrGrG7c6yEBs0b8T7V9lwYPV9y2pTw52zalOWHXI wZC84NdPvHKgr1CyFF4rB70Z2mgAJw8p8qoE9TNK0DJlppNVogJ1wiGStpdU oUgh+ayMjCqMyBrmZ21QBas/lqnidFUgDtq9SBXBAW/o2GJfFQ7enM7fbdiF g23Zy34hGTiw0g05cewfDko+ERtaUnCwUX7wwPkiHLR3802Y6WnA8syLJ4Eu mjBOllI6368JFrh/y7NcWvBh8i0PWtKC+A4Gt3WgFvwc8qivPksAhegSEY8i AtQti3D4HmpB6n2VnYNMPNiI3fqYK42HNRH3pQu/8FDUZjkt8ha7P+b47Lqz FuwjZZcdHMFD15CssBsfAcx05y9FlRGAmqoekX+cAMlib1a2pxKg6LbzqHcb AY7z3BYyESfCltyZGq4WApBvKYT9cSFAlOb+j+5WBEgo/arfUUOAR2axjCwp Ilw+Nb2w6zARrovftHPIIcKV1jTBv7kE+CBJ/KgwTYAlr5ob8vkECG65u0U0 iAgrzG8C3c9IME1mbi47QIaelc6wKCBDa57T+OIaGbK8Cob6limQsFPJ5ac8 FYRw+96a3aEC1euQcdprKnBKZ7iccNrw0+qf7NEfVCDg5KM7yqigtpnzu2KC ArPZW3LJnygAfEnWnhiN2xLQf/ovBZ7q/0n1z6dAZfSqymZjKvA/b/FPHKQA v9YAR1WICuk70o8EIQoINs4o+P6igIxBqLCCGBXiu4i+16Yp8O5oa+4AZpeu xFMBc0sKbLqnFtMpSYHSK1vWfpRSQD9mcEcWkwoa72KvyqhTwdd13wURESo0 XltdwvFTwW1vU2fqQwosBZb2xP0lwzMHHDHwMwUufOHTG3ajwungmaM1jylQ onPdsZmbCp8Vtay2YX4EZuRsrHhOAcuAFbedShQQCWqKYW8lQ1F74fYhMgnc 43axFz1JUElwu7lZhAyj7eNjD8dJkPDwifaMDxmezm4PwdeToVD+Rp3BXTKI 2bZYN+pQoKMsU8ZDigKMKb92p89kaHPaaq0+QgbObcmu+XYyNApK5oW7UGBc b+lwfwgFrCInRs5VUoAjO0WZIlEhOqP4pO0/LM7VRv/t0NcGjXJixZ4TOnCd OJs1aaEL16c+0ZeCdYF2amWkf78uRG0Tbqqe0oHDf6wtdzzSgcrieWJfrQ5o TX+t+UbRAaqOOiv4oTYE/ZnRjVTQhsYvRT61RtrwbGKiU1hAG+7cFD0Re4IK OuxZw8xwKpy/kqlDvESFvvq40fPG2tBa7Ww2EqINk66v3MyytSG6oYsr9SsV hBm4MzcNteHQ4UFW5VXM7kD+iuw2CkjdDPx9K4MKw8t3bVZVqLB1OjHizVEK tOvxXHLipsBZkVmO13cy/Ii5J/UljQSft//8ETBCBO8xixOUpwQ4ezKvKVSX ABtcAg7bhmsBt92r7stmWvDO0Zl8jIOHiGz9lQd/NWCdm5vuBR5N4LdyKvt4 SwNOnjyVGTmoAZ5vClgbn2hArLzYsf1DOFBZHKCd2aMOxS322mrSODj368OX 4nM4+BcSsDXlLA6KC/dOK+Xh4HV5KrXNHgf+WV8O8BXjQHY6jRbxRR1arCzy gqbUYCHU7Lf/mgq4J67+V2SjAgt1T2bVy5UBxi0OkL2UofdYkUdfqQp0hN2F NyKqgG9942awWRWii0uDPNrV4O8VGZsQFRxU5p/3t6HgYGLhTe7PjThQPxx3 abobB5qXIjLeZ+PgaYX1u5g7OGhu8hLPF9GA+MIGUXNRDfhs3OM9FIWDn7pD TZ1SOIgbGc78IoODLYPWE4ZeOGDjROTjEQ7w6Q25N8I14HFzkdS8hgbE6E0P nP6NA4fI/6RmJnEwnN32bzJUAxS/dOaJeWjAq6fp4etfa8B7A3P5zyc1gVB5 4F/feU1Iaxz88s0MD6JrSsY0WS0QF6kcKdtGgMK6kCQjMhF8MgkeyRZEaFi/ 5Y7/by3w7YSbz//iIbImc/jJDi0oFRRsv/xKCxpbmq+tv0iA38PL/DUmRJhh uRlUlRPBM/YBnesgEToc3Ua6I4nwknFo7CwPEYQOvXQKNiMCb+Kp9WvyJOhk GI3XHSTBt48TflGaZBgJu+zVz0eBTNP1A34VZFh64KJ40YMMdpLazbf2kIDu oydx8zERJAQIuw5Zk+D+/hzpjV9IQH34QTF6jQQGN/Uv1Gwgw6u83/c2KGL9 q8eO3FZEBhLx6+zwPjL40EJM0m+SoP/0535ONhESj5lpcIkRwb5Lo2CRjwjq C2Nmb30J0Oc1ta1uJwHSPJXa4jcQoOB6jmDOvBbcOcR8eyNHC1YNGYOp3Xgw sTy4u2w/HmS3Biecwur36Ikk1+AePMSnZFsLb9OCUH3ztMYKLaimzpBOaxCg 9I+iohKGB89DH5PjZwgQJPN2xvcoEdoOVtUfPkmEvKgnS8aHSNAQY/JMR48E E1GbJWqTicClc3f32goBXEP+RRUkEEHMdJBfJ5MEZvWOVVpKZJA5leH2xJwM eMLHTEcMHzj33JLN5zG82D9CMZ4igRVqHrj/BvNvyOBzxCsCMM7tqZvxI8A7 2uyJw2pE+J16PON+KREuHnBXiF0kQlZQs0cPhwT3BDbPVw2R4Lyj5p930iQ4 V1t9n1eICC3O1qubdxFA8ns+/UqdFowS5Evd1/DgnhRZrCGC+dV49qNgJAH0 pQJDSma04PICWTHKiADDkmo/gn21QMFIyuzIETyYJT4t8iThoVVeM+XBRU1Y kAr8LoLV59EDvGtxF/EQmpJxhErQgpDEpffHnPDwfZPiHZ9gPGT1jDg93YOH 3t4YEgfLw/c2p98yk3gYNNCM+puKB0Zml+LDCTy8IztvX1zBw41jW7+dl8VD YAX1lmUkHo7/67LReYDpT7677StmDzuQMuKwmwDl52/6kDC8Hwj9fnLdWS1Y Kz8/N3tXC5oPjOudy9QCRv1vUP2gBWMnncvVHbRAKfzF3c8NWhBID5kzI2qB +fHY8LiHeNBprgo+q4eH8wpjbTGgCSnJXztjD2qCVZVzWPaKBnCtwftlbH/Z MuzZcyMND8XXDjtyAA8P6ILFTzH/PIg5xplsLfASuVPz77wWpJjkD4qsw/aI r7utFruwfh2TPuMpSwBfcm2T0KwWpPdePOwyqgVGTB3JpC9aQLjgMDVJIsDu BJ1bNXlaIKxy978QSS3ovbjmWnILD8uDxbX5q5pgtPR7K4ELi4ugsR93nQa4 KPx1DtfRgF1WhvYzJA2geIw2hr3Gge65V73OphrQmQHwJkgD5u/sGg98pgHj dlZHTL9rwOnfO53S4zVg+1hhUvppDSggsI7s/6MBM8qfQo4IaMIXg4oD+WRN EI84sjCiiYdVUepax01N2PeocUiFoQmCEhKHnhzWhCN2jmku+Row7dfA1bBJ EwwkCxWMbDTh/nucxovLGmAXfeHBNdCAon8XdD/yaMBXmZqQQXMNWNT0Oeo9 gAO+4v1G2PID7769//GjWRUmzA3tLs2oQI2+wyPTfSrwUzTyW2G4KpQKxd67 VacGH+yHR58OqWL71qqDvb0arOOVKUzG8GSne5KGjRYO7FWTCx4HqUNDS15u 5kE1YNzagmROqME+NPfF95IauF7klrgwqgoGz6+ofbypBjteBR/ul1IFobry 0vN0ZUg0H/1cPqIIcTLFJtIUJeCau0gLUFcCrya6WEWtMizK2Xus2KjCWvTa 8b6NKsCYK0bPFpXhp/DiZXqSCkg/kpsK3K8MqwObeiY9lEHh7vm0063KoHFw 2e3LtDI8+3Mg+wqm79mIu2dxiTzMTlyvnnJRABk8g2fyEbafp6pHJzWvg1Oj 5BOrTDko2LAwGrhPFrRftu69YSoD0QabbHxuyQCDnvuGdlYaUr3DxJPw0iBm w3zCcZUGmknag9V/UjCv3nCm/JQUOBCyCtSLxOCQVM/9oBoRiBy/rb4/RxDu X4j4fa+HF1Qsyalp27lBn4L/S9vDDQP6rirp+7mhOupl1PUL3EC7FCtJ3LTG WojYe5KrcoW13T/eMNN7kXWgzejS8/pPLH674PIU2n+s2T+vdX4ZvWBFXHlT Jls7xeoghanUTb1jDUt0vXmhNcMyygrbFrz0kXVIz3Bmk/l/rK1DWrSd9M+s 8tEPrBv1S6wIbqfaCKOvLNfvW9SZrEWWaOzoxpXASZa63JOWDSqPWHFZGQPK fQOsCPkjHlupL1l+URMHUe8Hlj353TPDr59ZfVdelYr9mmf1PJk4w3N6kfXx vYPRhMQ3FpdbQJj1pp+sZcnG4KKiVZYtJZrUJsILmwqNZEs7BcEmOqpVV1gM uKrvCOeLiQIE0Q0MG8Wgrzx9ciReCgpO3VNi84rB4EFmQz1NHNRKtFs/uoqC WG32jcWDotCbp/C1vEoChv/1Tu7KloYfy6oTby9Iw37D16JXDWQg/47p0LF0 GdBm7jVgHZMFH92vA4rbZKH6YOEv5w3SEDueeoYdIgWiNiZSPjgpSGlqu9lG kAaJgHD55L3YuxBX91zmvQT0xGyXvnFdEsKmvHk69ovDyBMfrrw0UciMOk59 UCcKtZ47Pdx2ioAwO/WObJIgyPzyzwJzYZjtO7ToPSEMP892fepuEoaXPyRs y4ZFYPhszrNHG4UgwjFq30cRAei5oaE684Mfnr8r2H5iWhD6md+43VYEoWiv QFVpgzDotOUZRbwUh1KP4xJnvkjD9PZLx9suyMHt03E3rgmvA+MTSn2xIusg 0H3fu6V1cuCgvX2zZJYcLLwRG+1tWgf1Jet6xg3lMJznl/OxlQE5dOltxQEZ 8OWvfn2GLQvRAbruHa3SYGMSccHBTQqkTeMyWTskwaezpZLWIwnPfxmO4zdI AUq4XmVfJwZUj/mcG6ri0CD/XfIURxSsiuCtm6wQXJbL+WFvxw9dOZVOhDZu sNX4N/pXkAtaPW8HfMVxYe/jDAUlNj+U337w+mOpIGg13x9QuSkAfyq93lN0 hGBr2qjHo6ui0NN8S79ZVgKOX7gi0KoiCZ8jO9M6O8XA/ejesodLIiA1f0gn 7KQo7DdoEw5vEQNPH6+kIFlxcLqDrrj8EQOHgxmrnwbFIc1k0m1kQQLwAyEb bwpKwQeuhDBmsxjMm1ULP7cUBfue5yr/VMTBni9nTPufGMiECneRvomDJ3ub wePfIlC4DJaSZkLwIdxV4gFTBBwufXQUIIhATxan9aa9GNRK9B7YwS0KEQc/ CV1akwD9jMLsT+8lYWQtaG+HuDTcsQnsJ5ZKwZW6w10q+dLQsdf/tJWTDFBp 42c0a2SgilG5arAqC1yOl1zJenJg4CXgU+MlC2audSccUuTAxJMTThaUA6XC D47yBrIAhHG3qrR1UFQuWsh6vw7Cu96l1TTLQ1dnYPRCvzzI7heXZ/XIg/GD 10+eaCpAVVqY2LoFeRiOsBZ0j1kPmwTUb30slYVYiT0jGQ6y8LAs62ojptfU x/3vIDbHDF6VkiwipGDdfaM97rMSEJDTP+G0SQwaLBo5RVkisP+ZusMpI0HY vifgAfMkHxwSo7VPXOGBH5UnTO638UBTR/+6+JdckHLx6tXki1zgHPjfuIk9 VgfT0oFd77jAOOPLuPbLVdbAHWNO728uQBeyDi24YPVS7fIqZZQfbn8PVOYv 4wflYFaS8HoBKEvxHn+hyQ9BeIv+1TV+aNEadLPMwOjW6WSrjYLgTFItnNsi BI74QZV/icJwQJsdozUnDAktJIVT/wRhPKF176cuHki8N64vPbLGcjwqxjry a5VlnFU849f/l+XZkX/ilzcXvEs17Ii5ywWCq9eTza/xgEj+G/1sGQF4R+j7 9dJTGPC+1XNLO0Rgu0GooMkBSbhkmrjt5xEpGBWpn3JTlIbSjoifAtZycDK1 B6I3rwPvuc6LOcXr4bRkRcbYz3VA15Y741GyHgYtU98kFyqAcPd0/sePihD2 51errqkKyBZqFXYOqoLws04zxyI1ONqxq884Xh28vW0+nYrAwd+N2oq3dmhA 3t+3ltlVGiA60KjkHaoJwy/evNDD9r/w8Kyzu/2xPbD/tMtlkib4MaXE4i2w fUCb7dMrgIcFrav+UywtKCv/W/K6mwBR2apOi6FEYB14vrG7iQSNnlP9m4vJ 8BXueiVcpsCW1vSNMjkUCEo1kzKpo8Aj933d6rxUeJsvKCXnToX7fQoTsUlU MJ/T2Zk3SYXlbWZzSlHaMF9tTvbn04aAzJ+/00/qQFxARpfNfzrgO1hRRfuh A3M2QSG+trrAxZ7auNVBF7YkMCMr2HpwfaDrj7ffBvDf49c//48GBcJnKBQy HUQs/BJUx2jgEqbxn5UyHXjL9nIM9elw2FtoW+x3GvyonrDfaUGDk1diL3zS o4FTxYkRnAkNqrLuqRX70+DI0hCvuCENZryWx6utaPDo+vcZeiUNts/3PiTe osFfw7iULUM0uLhRfuGMLR1sn31x+3CaDsdbep4cFtSHUhctd2VVfXh+3TBo X64+nLoS8m0/zgDYd/oVuMwMwJntSPCoMIAUsXLjzQ8M4AgrS0s7xQDmFGnB eWwDEKq6G7NJ3ABK9EJC3KkGEL7LphyvZwDfuBhZhyUwvlfF7EybPtRrJ7ub b9CHKV/vUR48HQzmg2J9gA49PEXE/75iftDnU+iZNOinhjCpTjTwj9u/VthE A3md21dw3HTIXZCc351Lg6jNXiH4Who8T/n50ohFA8c9EZR1Z2ngubfwenAX DU4pPhj9944Gyu8FK85L02FAzIk5u5uObdLym+7soEOYa3saryMdhgyqw6QT 6WB1tXVz4A0sLlc+oP/y6bBh1rbp3AAdpAO6CzUx+5COyCPvE3Ro9pz/riBL h32Op3IvGtDhS1OXpKMpJhenNpozSYNNvf1t+Tg62GfRg5+p0+F0QWLTOSId WmvTpY2f0KCh8OPvbj46nOH6nrMby6+916PFPGs6sClTD2+RMP/qXfL/edEh ZUjc8EwCHci3LPa+qMb0n89bTMbsW325aKmcRIcPcftO4yyx/BVfKDW1p8Mb /YgbRUJ0WO+reiXejA5XD9jlGKfRYaWCT13zIx3scq5WvcL8mZ8QmLc/R4c/ 2xvZQzJ00JeoFL83Q4NhvUHzvvs0yAuyCfwtgPm1Y+PWNRs6VI333Eo4Toff 7cFDqbPY/XTIWZ5j+uC56wjvJJZv59eiSX57DODGgVaepAkDUB/2tvzhaQjn jnnc+tVlCD/eTOTtXjKENaP6rihbI6CevfXc3soIPp+n3iWbGkHsL73dx22M IFqtbduRY0YwA2FDNreNwIOabfj4rxEcuuX96KibMZgP1eq59RhDf83ZEpsJ Y+gbW9Id+4Tdi6gXy9w2BpLVb5MsWxNI36Z6679LJtAcHmzzSpIBXlK4KY8H JtCHHn9lnzcBLplY3qUyEzg35NW646gJHEi3RqeCsbNpi+zzQROYNGU5j30z gQDunsS4tybwUlz/PTw0gY/lPfM7akygNde1k6vdBIotnkv1z5pAuT7vqRQc A7gK8svZRAYcKL9SaR7HgIZXqj7axxiw/clt54yDDOgSMjHmt2RAxmCq8cRW Bujt4RnOuMyAknF2c0ceAzIf33tons6A5FVhpzvdDLBKa60rGWCAXeLsycgW Bkiv/9JAGmHAZKts/YYXDKhLvEyFFCb4/bePyNzLhJScI4Zjj5ngcdC7+oa0 KRAShckP2KZw0zK288xPJlC3u74M3GwKaj6Ga7LrTYG1N1B5xz8mxL4IGPXE aCOhbeeaMPlA6zfubjKmUCvAs9U0yhSWA08V8IibQZjzrsurbmagfOJhdfio GTxT9RXL5jKHiIc7s3Kp5qCvVEVakjeH9pIX20uFzEEq49y2sBkzMM4yb5Jx N4feTWEOlRnmoBAbnHUqAOMfvPLM/rY5Nhfqj/slm8PE3Wm7J1cxvovLmY2l 5mDjwan2tTcHozqPyWu+5pCVmXLg135zoHL/cvi1YAZLzfiuBylmMPvmktD8 djPwDUqLXmWZAVzLv6WyagqbL701PH7PFISnW3IlOkwhmOSRxRVqBnoW3D+L NpvD29jQy+at5pA4EfO9KN0CQruNj5N/WoAVl/VvyVRLKPQT1PHYbwnqp6s0 Lntbgl5U+4iUuiWctSLd1WZZgl9gyiZvP0toe2vG6A+1hHgPK0XXbkvwnV6Q KhJjQWCYAb8giwVxOgUT6rtYEH7b4rjtDUtIGwz6E5VmCUZl1OrLRy3hpN+5 P3UdlnBlY7t0mBYL2pjn01tPseBdZFv36E8WxOIt1zomWKA95y1wWxjA08Zu a7sKQJnvpH6uMsBeQsjjrYoAcx+yLGQ5ACe8iGBEB+gZrJv8qASwPr77ksR6 ALde/j3pUgBiHiOfh/kA1vprnFInWfDbWEZFnAfgA3mp/uQHFvQQWR062P0O xZb1d4dZIJVUcGzmBQscxAzvVM6xwLW2YjDoCQtmPwdx9KtYcJMSob9YxgJz VWSy5wYLoMh+NWUfC7qWuBbOXGZBWPtz9cx4FmwXrmvc18WCIJljuY/Ps6Dq qvCpsRoW7BOKeZGM6Z/SixfrlAD4M1ysu10AwEnqWdc05tdK9aucIuy5dK9Y n8tplQUEk8w7lEUWqFHxJRmfWWDHc54k8ZwFPgWpHWvcAN0b+Fnb/rFg3tPt C7ZWgUWicdWVDQA/S3oXZjcCtO/Dl3t6AVy/nfZd+SBAgnS0l9LB/8fD4hst D4uDvufm5UqAXV+3L0uXABhY2uHnqgGUyolxbbcB2O2fDlneAihs/thai8np lFXOtdYAbJhaUnl5DaCDuaHjXgHAj79Cu7QuAtAOu8cT/QGIKbxOuVh46mkG h6fkAZzl5tsR5s/TRn4uKQ2Ak3IHDIcNAAYY/QxnLF+tCfuC2sWwfAfHFz7E 1mFLNZbxRXuA4MexUh9OA7iw684drgWg6N0qqRoCwFmLf2e0AyyYXLVqLAfY ZoEOnH0N4JHXvqnjB4D8I1ufe3xWYOVNF51bBvDhS04V4LaCMMODKuVmVmDA HRQQ/ReA3OHiaCpsBfyu2b+/EqzgVpSWCQ/HChYPp/Hu2GUFH3hJLzckW0Hs NDX4B7IC4lhu8sS4FVQkb4692GAFj24uiU28tIJ3J2rB7o8VbBEJuu2nag3b cvxKRsWswSaFlGwobQ2CksVCNT7WYOT57q7MaWsY4Z/6tvTUGuj+8aOSs9Yw GjrB3qnIhhWG9hGmFRsivD/WrNNjw+hk+xVlezb4miafV4lhQ65i9I0919iQ as/ZO1nNhq3/eIctStmQdUPGqDMTkxs9a6KNyVdu0G2fkWJD1ys+x3FdNrwU Rj/aRbH7jJhPA9j3Fgr9xscxfpu17H0adv9KU9txxhCT29ryruAoG7rdO+Vj TrMhUuzYHLGADZc2KrVoBbDBOTpN4OQeNrxuPTO8w4IN/rcjetnb2HC08K2i UzAbPvDN6B0MZMNHM4mnzrvYMGx98MTfXDYsxXW9cR9jA3i9epj+gg0/zyxt tBCygaYY04zFDTYY/tU7BYjaQNeYHNkcO6u3eS3KStrAjT8iNiRHG/iZV+zF pGJyX+ucj8nYwL54A6NvijbwEie3cSNG/2cv/PY2xQbqs67yKGD6TN+vmKhY 28C8+ZENNx1s4PZNoy8dvjbQKtt0KareBviGjfQZFTagv0zVWbxhA2GPDKm3 22wgfXW6/sJ3G1A+8tdz4zoORB6IrR8y44DTZ9e4+LMcsOx8YKd2hAMhphzr zwc4cMjzh/fpBA6U+HPjfwVzIGj2e+DaLg5If6FdDtvBgenHG77fceeA2uOy X5/OcODv5FWd0asc2GDQ3KlexwFetcWe/g8cuIK/+Wr3V+w7Z74lrDzigHMN ua8fk6c7MEUbLnNg2LMhwvAaB7x89ye0veRAyyPq+r0/OSAWfsVh7jtmD9Or f3aIA4yEZ4EXmzigjs9fohRwgM+Yb3pPBgfmbtJHeKo44Co2q79nHrN3w9Ep lS4OVEtNXvZ6yoE7avstgkc5oDfkZP2A2xYOEJ4plKjaQnoT863CSVu4d9Gb bTVtC+e+PbCYI9nB8/4X7XbedjDHvfgOH28H7ucMTMDLDs7N0Rre+dlB24+7 LwlOduB18Nre54l2kGev3uR/wg6KdhlcG3hpB2dlPPLXTdgBd5D3Vt1HdpB4 csxJ/4kd9Honny8ctoNG3qPnDv2xg6Ay94t+a3bw0ug234mHdrAq4tFnsGIH LfJlqkrP7CCt4LdUTrEd6CVsvqmZZgdP1+11Cy23A9P7eN6CMjvgu7O826AW +50sx4jSZgdG9/33/b5mBxr+PDupF+0gI/9S8tdGO/h2NdJm6h6mV2jAPLb2 /3JiWtPBdlB2lI6/s94OHFcZN84M2ULzgor4dJItrGxem7oRYQteynWOKWm2 4Gh4/NqvdFvwXknxzDtjCw1LN995+tnCoa3nQrk8beF5Vsf5cQtb6D29bDbO tgWPbRvcY2RsQUUBV2kmbQtC4lUpChgtm/449HCILXAt/4RNKbZwcWrv2FyV LQzHv37sfs4WHl1tbvEMs4Uz9h/EPY7awrXyv4fsL9lCn51yZ3ysLfRnpwxP +9qCZFnQspOTLUg/vxx3kYHZrXbnbz72HUeLivrfWL3wv76nMylgC+27Vbqv FnNg+XUUVGP1diVuj09dBAeG7K3IU4DVr8yvv1t3c0Bh5KDkHmMOtGom7hgQ 5wDhhSBRd8IGBvB3JfFzNvBqF7U1eBbry8O29iMiHHgq4sjbhPWR88GhP/XS HEgU0xpTXs8BdmHqoy/yHPiwk5s9OGYDBTbx3jef2QDDI82V8tEGkk/7OQaW 2oBJ+8na6+k20BZ29uFyjQ1ke46s/GzE9IkeXZc5ZQPqBtp2KkockNgakrhP ggNxny/8SlfjwOpl4VtJvhx45J0wpxzHgW6e3cKCeRxo1LB1MhnmgE7UNdwt qi3ojslfFDpsC0G1H5M8E2yB1zBum0WGLUyz8w/PxWP8xgvC7RdsoQTP66Ts ZQvdq9MpgoewfsiZesKYsIVo5MPrqWQHpVaiudo/bWFRRjVgdgyLN3cf0Woc y99i9plj9bZQmPGbTf9gC1p0S02fVVv4H0Ekek4= "], {{2997907200, 3313526400, 86400}}, 1, {"Continuous", 1}, { "Continuous", 1}, 1, { Method -> {"Interpolation", InterpolationOrder -> 1}}}]& ], Editable->False, SelectWithContents->True, Selectable->True]\);
In[2]:=
X
Labeled[DateListPlot[stock["Path"], PlotStyle -> Thick, ImageSize -> 400, Joined -> True, Filling -> -30], Column[{Style["Simulated Daily Returns", Bold, FontSize -> 18, FontFamily -> "Helvetica"], Style["1995 to 2005", Bold, FontSize -> 16, FontColor -> Gray, FontFamily -> "Helvetica"]}], {{Top, Left}}]
The following data is daily returns for a hypothetical stock simulated from a
FractionalBrownianMotionProcess
from January 1995 to January 2005.
Out[2]=
The estimated Hurst exponent suggests a long memory process.
In[3]:=
X
pars = FindProcessParameters[stock, FractionalBrownianMotionProcess[h]]
Out[3]=
This is exemplified by the
CorrelationFunction
of the estimated process.
In[4]:=
X
ListPlot[Table[ CorrelationFunction[FractionalBrownianMotionProcess[h] /. pars, 1, j], {j, 100}], Filling -> Axis, PlotRange -> All]
Out[4]=