New in Wolfram Mathematica 7: Discrete Calculus  previous | next 
Compute a Collection of Definite Sums
Compute a collection of definite sums, of finite and infinite domains.
In[1]:=

Click for copyable input
problems = {HoldForm[\!\(

\*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(m\)]

\*FractionBox[\(5\ 

\*SuperscriptBox[\(q\), \(k\)]\), \(\((1 - 5\ 

\*SuperscriptBox[\(q\), \(k\)])\)\ QPochhammer[5, q, k]\)]\)], 

   HoldForm[\!\(

\*UnderoverscriptBox[\(\[Sum]\), \(k = 0\), \(Floor[

\*FractionBox[\(n\), \(2\)]]\)]

\*FractionBox[\(

\*SuperscriptBox[\((\(-1\))\), \(k\)]\ 

\*SuperscriptBox[\(2\), \(n - 2\ k\)]\ Binomial[n - k, k]\), \(n + 

       1\)]\)], HoldForm[\!\(

\*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(q - 1\)]\(Cos[

\*FractionBox[\(4\ \[Pi]\ k\), \(q\)]]\ 

\*SuperscriptBox[\(Csc[

\*FractionBox[\(\[Pi]\ k\), \(q\)]]\), \(4\)]\)\)], HoldForm[\!\(

\*UnderoverscriptBox[\(\[Sum]\), \(k = 0\), \(m\)]\(Binomial[n, 

      k]\)\)], HoldForm[\!\(

\*UnderoverscriptBox[\(\[Sum]\), \(k = 0\), \(n\)]\(\(k!\)\ 

\*SuperscriptBox[\((\(-1\))\), \(n - k\)]\ Binomial[n, k]\)\)], 

   HoldForm[\!\(

\*UnderoverscriptBox[\(\[Sum]\), \(k = 0\), \(m\)]

\*FractionBox[

SuperscriptBox[\(4\), \(k\)], \(Binomial[2\ k, k]\)]\)], HoldForm[\!\(

\*UnderoverscriptBox[\(\[Sum]\), \(k = 0\), \(\[Infinity]\)]

\*FractionBox[\(HermiteH[2\ k + 1, x]\), \(\((2\ k + 1)\)!\)]\)], 

   HoldForm[\!\(

\*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(\[Infinity]\)]

\*FractionBox[\(3\ k + 5\), 

SuperscriptBox[\((2\ k - 1)\), \(8\)]]\)], HoldForm[\!\(

\*UnderoverscriptBox[\(\[Sum]\), \(k = 0\), \(\[Infinity]\)]

\*FractionBox[\(\(\((3\ k + 1)\)!\)\ 

\*SuperscriptBox[\(x\), \(k\)]\), \(\((5\ k + 2)\)!\)]\)], 

   HoldForm[\!\(

\*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(\[Infinity]\)]

\*FractionBox[\(PolyGamma[k]\), 

SuperscriptBox[\((k + 1)\), \(2\)]]\)], HoldForm[\!\(

\*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(\[Infinity]\)]

\*FractionBox[\(HarmonicNumber[k, 2]\), 

SuperscriptBox[\(k\), \(2\)]]\)], HoldForm[\!\(

\*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(\[Infinity]\)]\(ArcTan[

\*FractionBox[\(2\ 

\*SuperscriptBox[\(3\), \(k\)]\), \(2 + 

\*SuperscriptBox[\(3\), \(k\)] + 

\*SuperscriptBox[\(3\), \(1 + k\)] + 

\*SuperscriptBox[\(3\), \(1 + 2\ k\)]\)]]\)\)], HoldForm[\!\(

\*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(\[Infinity]\)]

\*FractionBox[\(LucasL[\ k]\), 

SuperscriptBox[\(2\), \(k\)]]\)], HoldForm[\!\(

\*UnderoverscriptBox[\(\[Sum]\), \(k = 2\), \(\[Infinity]\)]

\*FractionBox[\(\(\ \)\(Log[k]\)\), 

SuperscriptBox[\(E\), \(k\)]]\)], HoldForm[\!\(

\*UnderoverscriptBox[\(\[Sum]\), \(k = 0\), \(\[Infinity]\)]

\*FractionBox[\(StirlingS2[k + 1, k]\), \(

\*SuperscriptBox[\(5\), \(k\)]\ \(k!\)\)]\)], HoldForm[\!\(

\*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(\[Infinity]\)]\(k\ 

\*SuperscriptBox[\(BesselJ[k, z]\), \(2\)]\)\)], HoldForm[\!\(

\*UnderoverscriptBox[\(\[Sum]\), \(k = 2\), \(\[Infinity]\)]

\*FractionBox[\(Zeta[2\ k]\), \(\((2\ k + 1)\)\ \((2\ k + 2)\)\ 

\*SuperscriptBox[\(2\), \(2\ k\)]\)]\)], 

   HoldForm[Sum[1/Mod[k^2, k^3, k^4], {k, 1, \[Infinity]}]]};
In[2]:=

Click for copyable input
FormulaGallery[forms_List] := 

 Module[{vals = ParallelMap[ReleaseHold, forms]}, 

  Text@TraditionalForm@

    Grid[Table[{forms[[i]], "==", vals[[i]]}, {i, Length[forms]}], 

     Dividers -> {{True, False, False, True}, All}, 

     Alignment -> {{Right, Center, Left}, Baseline}, 

     Background -> LightYellow, Spacings -> {{4, {}, 4}, 1}]]
In[3]:=

Click for copyable input
FormulaGallery[problems]
Out[3]=