problems = {HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(m\)]
\*FractionBox[\(5\
\*SuperscriptBox[\(q\), \(k\)]\), \(\((1 - 5\
\*SuperscriptBox[\(q\), \(k\)])\)\ QPochhammer[5, q, k]\)]\)],
HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k = 0\), \(Floor[
\*FractionBox[\(n\), \(2\)]]\)]
\*FractionBox[\(
\*SuperscriptBox[\((\(-1\))\), \(k\)]\
\*SuperscriptBox[\(2\), \(n - 2\ k\)]\ Binomial[n - k, k]\), \(n +
1\)]\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(q - 1\)]\(Cos[
\*FractionBox[\(4\ \[Pi]\ k\), \(q\)]]\
\*SuperscriptBox[\(Csc[
\*FractionBox[\(\[Pi]\ k\), \(q\)]]\), \(4\)]\)\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k = 0\), \(m\)]\(Binomial[n,
k]\)\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k = 0\), \(n\)]\(\(k!\)\
\*SuperscriptBox[\((\(-1\))\), \(n - k\)]\ Binomial[n, k]\)\)],
HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k = 0\), \(m\)]
\*FractionBox[
SuperscriptBox[\(4\), \(k\)], \(Binomial[2\ k, k]\)]\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k = 0\), \(\[Infinity]\)]
\*FractionBox[\(HermiteH[2\ k + 1, x]\), \(\((2\ k + 1)\)!\)]\)],
HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(\[Infinity]\)]
\*FractionBox[\(3\ k + 5\),
SuperscriptBox[\((2\ k - 1)\), \(8\)]]\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k = 0\), \(\[Infinity]\)]
\*FractionBox[\(\(\((3\ k + 1)\)!\)\
\*SuperscriptBox[\(x\), \(k\)]\), \(\((5\ k + 2)\)!\)]\)],
HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(\[Infinity]\)]
\*FractionBox[\(PolyGamma[k]\),
SuperscriptBox[\((k + 1)\), \(2\)]]\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(\[Infinity]\)]
\*FractionBox[\(HarmonicNumber[k, 2]\),
SuperscriptBox[\(k\), \(2\)]]\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(\[Infinity]\)]\(ArcTan[
\*FractionBox[\(2\
\*SuperscriptBox[\(3\), \(k\)]\), \(2 +
\*SuperscriptBox[\(3\), \(k\)] +
\*SuperscriptBox[\(3\), \(1 + k\)] +
\*SuperscriptBox[\(3\), \(1 + 2\ k\)]\)]]\)\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(\[Infinity]\)]
\*FractionBox[\(LucasL[\ k]\),
SuperscriptBox[\(2\), \(k\)]]\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k = 2\), \(\[Infinity]\)]
\*FractionBox[\(\(\ \)\(Log[k]\)\),
SuperscriptBox[\(E\), \(k\)]]\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k = 0\), \(\[Infinity]\)]
\*FractionBox[\(StirlingS2[k + 1, k]\), \(
\*SuperscriptBox[\(5\), \(k\)]\ \(k!\)\)]\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(\[Infinity]\)]\(k\
\*SuperscriptBox[\(BesselJ[k, z]\), \(2\)]\)\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k = 2\), \(\[Infinity]\)]
\*FractionBox[\(Zeta[2\ k]\), \(\((2\ k + 1)\)\ \((2\ k + 2)\)\
\*SuperscriptBox[\(2\), \(2\ k\)]\)]\)],
HoldForm[Sum[1/Mod[k^2, k^3, k^4], {k, 1, \[Infinity]}]]};