New in Wolfram Mathematica 7: Discrete Calculus  previous | next 
Explore Continuous and Discrete Calculus Analogs
Explore some of the many analogs that exist between continuous and discrete calculus operations.
In[1]:=

Click for copyable input
grid = Grid[{

    {"Derivative", "\!\(\*SubscriptBox[\"\[PartialD]\", \"x\"]\)u[x]",

      "Difference", 

     "\!\(\*SubscriptBox[\"\[DifferenceDelta]\", \"x\"]\)u[x]"},

    {"Indefinite Integral", "\[Integral]u[x]\[DifferentialD]x", 

     "Indefinite Sum", "\!\(\*SubscriptBox[\"\[Sum]\", \"x\"]\)u[x]"},

    {"Definite Integral", 

     "\!\(\*SubsuperscriptBox[\"\[Integral]\", \"a\", \"b\"]\)u[x]\

\[DifferentialD]x", "Definite Sum", 

     "\!\(\*UnderoverscriptBox[\"\[Sum]\", 

RowBox[{\"k\", \"=\", \"a\"}], \"b\"]\)u[x]"},     {"Differential \

Equation", 

     "F[u[x],\!\(\*SubscriptBox[\"\[PartialD]\", \"x\"]\)u[x],\

\[Ellipsis],\!\(\*SubscriptBox[\"\[PartialD]\", 

RowBox[{\"{\", 

RowBox[{\"x\", \",\", \"n\"}], \"}\"}]]\)u[x]]\[Equal]0]", 

     "Difference Equation", 

     "F[u[x],\!\(\*SubscriptBox[\"\[DifferenceDelta]\", \"x\"]\)u[x],\

\[Ellipsis],\!\(\*SubscriptBox[\"\[DifferenceDelta]\", 

RowBox[{\"{\", 

RowBox[{\"x\", \",\", \"n\"}], \"}\"}]]\)u[x]]\[Equal]0]"},

    {"Exponential", 

     "\!\(\*SubscriptBox[\"\[PartialD]\", \

\"x\"]\)\!\(\*SuperscriptBox[\"\[ExponentialE]\", \

\"x\"]\)=\!\(\*SuperscriptBox[\"\[ExponentialE]\", \"x\"]\)", 

     "Exponential", 

     "\!\(\*SubscriptBox[\"\[DifferenceDelta]\", \

\"x\"]\)\!\(\*SuperscriptBox[\"2\", \"x\"]\)=\!\(\*SuperscriptBox[\"2\

\", \"x\"]\)"},

    {"Logarithm", 

     "\!\(\*SubscriptBox[\"\[PartialD]\", \

\"x\"]\)Log[x]=\!\(\*FractionBox[\"1\", \"x\"]\)", "PolyGamma", 

     "\!\(\*SubscriptBox[\"\[DifferenceDelta]\", \

\"x\"]\)PolyGamma[x]=\!\(\*FractionBox[\"1\", \"x\"]\)"},   \

{"Linearity", 

     "\!\(\*SubscriptBox[\"\[PartialD]\", \

\"x\"]\)(u[x]+v[x])=\!\(\*SubscriptBox[\"\[PartialD]\", \"x\"]\)u[x]+\

\!\(\*SubscriptBox[\"\[PartialD]\", \"x\"]\)v[x]", "Linearity", 

     "\!\(\*SubscriptBox[\"\[DifferenceDelta]\", \"x\"]\)(u[x]+v[x])=\

\!\(\*SubscriptBox[\"\[DifferenceDelta]\", \

\"x\"]\)u[x]+\!\(\*SubscriptBox[\"\[DifferenceDelta]\", \

\"x\"]\)v[x]"}, 

    {"Power", "\!\(\*SuperscriptBox[\"x\", \"n\"]\)", 

     "FactorialPower", 

     "\!\(\*TemplateBox[{\"x\",\"n\"},\n\"FactorialPower\"]\)"},

    {"Integral of a Power", 

     "\[Integral]\!\(\*SuperscriptBox[\"x\", \

\"n\"]\)\[DifferentialD]x=\!\(\*FractionBox[SuperscriptBox[\"x\", 

RowBox[{\"n\", \"+\", \"1\"}]], 

RowBox[{\"n\", \"+\", \"1\"}]]\)", "Sum of a Factorial Power", 

     "\!\(\*SubscriptBox[\"\[Sum]\", \

\"x\"]\)\!\(\*TemplateBox[{\"x\",\"n\"},\n\

\"FactorialPower\"]\)=\!\(\*FractionBox[TemplateBox[{\"x\",RowBox[{\"\

n\", \"+\", \"1\"}]},\n\"FactorialPower\"], 

RowBox[{\"n\", \"+\", \"1\"}]]\)"}, {"Power Series", 

     "f[x] = \!\(\*SubsuperscriptBox[\"\[Sum]\", 

RowBox[{\"k\", \"=\", \"0\"}], \"\[Infinity]\"]\)\!\(\*FractionBox[

RowBox[{SuperscriptBox[\"\[PartialD]\", \"k\"], 

RowBox[{\"f\", \"[\", \"a\", \"]\"}]}], 

RowBox[{\"k\", \"!\"}]]\)(x-a\!\(\*SuperscriptBox[\")\", \"k\"]\)", 

     "Factorial Power Series", 

     "f[x] = \!\(\*SubsuperscriptBox[\"\[Sum]\", 

RowBox[{\"k\", \"=\", \"0\"}], \"\[Infinity]\"]\)\!\(\*FractionBox[

RowBox[{SuperscriptBox[\"\[DifferenceDelta]\", \"k\"], 

RowBox[{\"f\", \"[\", \"a\", \"]\"}]}], 

RowBox[{\"k\", \"!\"}]]\)(x-a\!\(\*SuperscriptBox[\")\", 

RowBox[{\"(\", \"k\", \")\"}]]\)"}, {"Fundamental Theorem", 

     "\[Integral]\!\(\*SubscriptBox[\"\[PartialD]\", \"x\"]\)f[x]\

\[DifferentialD]x=f[x]+C", "Fundamental Theorem", 

     "\!\(\*SubscriptBox[\"\[Sum]\", \"x\"]\)\!\(\*SubscriptBox[\"\

\[DifferenceDelta]\", \"x\"]\)f[x]=f[x]+C"},  {"Integration by Parts",

      "\[Integral]f[x]\!\(\*SubscriptBox[\"\[PartialD]\", \

\"x\"]\)g[x]\[DifferentialD]x \[Equal] \

f[x]g[x]-\[Integral]\!\(\*SubscriptBox[\"\[PartialD]\", \

\"x\"]\)f[x]g[x]\[DifferentialD]x", "Summation by Parts", 

     "\!\(\*SubscriptBox[\"\[Sum]\", \

\"x\"]\)f[x]\!\(\*SubscriptBox[\"\[DifferenceDelta]\", \

\"x\"]\)g[x]=f[x]g[x]-\!\(\*SubscriptBox[\"\[Sum]\", \

\"x\"]\)\!\(\*SubscriptBox[\"\[DifferenceDelta]\", \

\"x\"]\)f[x]\!\(\*TemplateBox[{RowBox[{\"g\", \"[\", \"x\", \

\"]\"}],\"x\"},\n\"DiscreteShift2\"]\)"}, {"Laplace Transform", 

     "\!\(\*SubsuperscriptBox[\"\[Integral]\", \"0\", \

\"\[Infinity]\"]\)f[x]\!\(\*SuperscriptBox[\"\[ExponentialE]\", 

RowBox[{

RowBox[{\"-\", \" \", \"s\"}], \" \", \"x\"}]]\)\[DifferentialD]x", 

     "Z Transform", "\!\(\*UnderoverscriptBox[\"\[Sum]\", 

RowBox[{\"n\", \"=\", \"0\"}], \

\"\[Infinity]\"]\)f[n]\!\(\*SuperscriptBox[\"z\", 

RowBox[{\"-\", \"n\"}]]\)"},    {"Fourier Transform", 

     "\!\(\*FractionBox[\"1\", SqrtBox[

RowBox[{\"2\", \" \", \"\[Pi]\"}]]]\)\!\(\*SubsuperscriptBox[\"\

\[Integral]\", 

RowBox[{\"-\", \"\[Infinity]\"}], \

\"\[Infinity]\"]\)f[x]\!\(\*SuperscriptBox[\"\[ExponentialE]\", 

RowBox[{\"\[ImaginaryI]\", \" \", \"t\", \" \", \"x\"}]]\)\

\[DifferentialD]x", "Discrete-Time Fourier Transform", 

     "\!\(\*UnderoverscriptBox[\"\[Sum]\", 

RowBox[{\"n\", \"=\", 

RowBox[{\"-\", \"\[Infinity]\"}]}], \

\"\[Infinity]\"]\)f[n]\!\(\*SuperscriptBox[\"\[ExponentialE]\", 

RowBox[{

RowBox[{\"-\", \"\[ImaginaryI]\"}], \" \", \"n\", \" \", \

\"\[Omega]\"}]]\)"}},           

   Dividers -> All, 

   Alignment -> {{Left, Center, Left, Center}, Baseline}, 

   Background -> LightYellow, Spacings -> {1, 2}, ItemSize -> Full];
In[2]:=

Click for copyable input
TraditionalForm@

 Style[grid, {FontFamily -> "Helvetica", FontSize -> Small}]
Out[2]//TraditionalForm=