Text@TraditionalForm@
Grid[{{HoldForm[\!\(TraditionalForm\`SumConvergence[
\*FractionBox[\(1\),
SuperscriptBox[\(n\), \(2\)]],
n]\)], \!\(TraditionalForm\`SumConvergence[
\*FractionBox[\(1\),
SuperscriptBox[\(n\), \(2\)]], n]\), DiscretePlot[\!\(TraditionalForm\`
\*UnderoverscriptBox[\(\[Sum]\), \(n\), \(m\)]
\*FractionBox[\(1\),
SuperscriptBox[\(n\), \(2\)]]\), {m, 20}, ImageSize -> 100,
Ticks ->
None]}, {HoldForm[\!\(TraditionalForm\`SumConvergence[n,
n]\)], \!\(TraditionalForm\`SumConvergence[n, n]\),
DiscretePlot[\!\(TraditionalForm\`
\*UnderoverscriptBox[\(\[Sum]\), \(n\), \(m\)]n\), {m, 20},
ImageSize -> 100,
Ticks -> None]}, {HoldForm[\!\(TraditionalForm\`SumConvergence[\*
FormBox[
SuperscriptBox["x", "n"],
TraditionalForm], n]\)], \!\(TraditionalForm\`SumConvergence[\*
FormBox[
SuperscriptBox["x", "n"],
TraditionalForm], n] // TraditionalForm\),
Row[Table[DiscretePlot[Sum[\!\(TraditionalForm\`
\*SuperscriptBox[\(x\), \(n\)]\), {n, m}], {m, 15}, ImageSize -> 75,
Ticks -> None], {x, \!\(TraditionalForm\`{
\*FractionBox[\(1\), \(3\)], 1,
\*FractionBox[\(4\), \(3\)]}\)}]]}, \
{HoldForm[\!\(TraditionalForm\`SumConvergence[\*
FormBox[
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"(",
RowBox[{"n", "+", "1"}], ")"}]], "n"],
TraditionalForm], n]\)], \!\(TraditionalForm\`SumConvergence[\*
FormBox[
RowBox[{"-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}], "n"], "n"]}],
TraditionalForm], n]\), DiscretePlot[Sum[\!\(TraditionalForm\`
\*FractionBox[
SuperscriptBox[\((\(-1\))\), \((n + 1)\)], \(n\)]\), {n, m}], {m,
30}, ImageSize -> 100,
Ticks -> None]}, {HoldForm[\!\(TraditionalForm\`SumConvergence[\*
FormBox[
FractionBox[
RowBox[{
TemplateBox[{"n","5"},
"Mod"], " ",
RowBox[{"sin", "(",
RowBox[{"4", " ", "n"}], ")"}]}], "n"],
TraditionalForm], n]\)], \!\(TraditionalForm\`SumConvergence[\*
FormBox[
FractionBox[
RowBox[{
TemplateBox[{"n","5"},
"Mod"], " ",
RowBox[{"sin", "(",
RowBox[{"4", " ", "n"}], ")"}]}], "n"],
TraditionalForm], n]\), DiscretePlot[Sum[\!\(TraditionalForm\`\*
FractionBox[
RowBox[{
TemplateBox[{"n","3"},
"Mod"], " ",
RowBox[{"sin", "(",
RowBox[{"4", " ", "n"}], ")"}]}], "n"]\), {n, m}], {m, 20, 180, 2},
ImageSize -> 100, Ticks -> None]}, {HoldForm[
SumConvergence[n Boole[n^2 < 1000],
n]], \!\(TraditionalForm\`SumConvergence[\*
FormBox[
RowBox[{"n", " ",
RowBox[{"Boole", "[",
RowBox[{
SuperscriptBox["n", "2"], "<", "1000"}], "]"}]}],
TraditionalForm], n]\), DiscretePlot[\!\(TraditionalForm\`
\*UnderoverscriptBox[\(\[Sum]\), \(n\), \(m\)]n\ Boole[
\*SuperscriptBox[\(n\), \(2\)] < 1000]\), {m, 1, 80, 2},
ImageSize -> 100, Ticks -> None]}}, Dividers -> All,
Background -> LightYellow,
Alignment -> {{Center, Center, Center}, Baseline},
Spacings -> {1, 1.6}]