GraphicsGrid[{{StreamDensityPlot[{y, -x}, {x, -2, 2}, {y, -2, 2},
RegionFunction -> Function[{x, y}, 0.55 < x^2 + y^2 < 4.2],
ColorFunction -> "RedBlueTones", Frame -> False,
StreamScale -> Medium, ImageSize -> Medium,
LightingAngle -> Automatic, BoundaryStyle -> {Black, Thick}],
StreamDensityPlot[{Cos[x^2 + y], 1 + x - y^2}, {x, -3, 3}, {y, -3,
3}, ColorFunction -> "BeachColors",
StreamColorFunction -> "DeepSeaColors", StreamStyle -> Black,
StreamScale -> {Automatic, Automatic, Scaled[0.8]},
Frame -> False, LightingAngle -> Automatic,
RegionFunction -> Function[(#1 + 3) >= 0.45 #2^2],
BoundaryStyle -> {Blue, Thick}]}, {VectorDensityPlot[{Cos[y] -
Sin[x]^3, -.1 y - Sin[x]}, {x, -4, 4}, {y, -4, 4},
Frame -> False, VectorScale -> {0.05, Automatic, None},
VectorPoints -> 25, AspectRatio -> Automatic,
ColorFunction -> "IslandColors",
VectorColorFunction -> "RedBlueTones",
BoundaryStyle -> {Red, Thick},
RegionFunction -> Function[#2 + #1 + 0.3 >= Sin[#1]]],
VectorDensityPlot[{Cos[x + y^3], Sin[y + x^3]}, {x, -3, 3}, {y, -3,
3}, Frame -> False, ColorFunction -> "TemperatureMap",
VectorScale -> {Automatic, Automatic, Automatic},
RegionFunction -> Function[#1^2 + #2^2 <= 9],
BoundaryStyle -> Thick, MaxRecursion -> 2,
VectorColorFunction -> "RoseColors", VectorPoints -> Fine]}}]