imagescale = {Automatic, 500, 128};
tex1 = LineIntegralConvolutionPlot[{{Cos[x^2 + y^3], Cos[y^2 + x^3]},
imagescale}, {x, -3, 3}, {y, -3, 3}, ColorFunction -> "Rainbow",
Frame -> False, LightingAngle -> 0];
tex2 = LineIntegralConvolutionPlot[{{Cos[x + y^3], Sin[y + x^3]},
imagescale}, {x, -3, 3}, {y, -3, 3}, ColorFunction -> "Rainbow",
Frame -> False, LightingAngle -> 0];
tex3 = LineIntegralConvolutionPlot[{{Sin[Cos[3 y] + Sin[3 x]],
Cos[Sin[3 y] + Cos[3 x]]}, imagescale}, {x, -3, 3}, {y, -3, 3},
ColorFunction -> "DarkRainbow", Frame -> False, LightingAngle -> 0];
tex4 = LineIntegralConvolutionPlot[{{ y^2, Sin[x^3 + y^3]},
imagescale}, {x, -3, 3}, {y, -3, 3},
ColorFunction -> "AvocadoColors", Frame -> False,
LightingAngle -> 0, LineIntegralConvolutionScale -> 2];
tex5 = LineIntegralConvolutionPlot[{{ 1, Sin[x^3 + y^3]},
imagescale}, {x, -3, 3}, {y, -3, 3},
ColorFunction -> "AvocadoColors", Frame -> False,
LightingAngle -> 0, LineIntegralConvolutionScale -> 2];
tex6 = LineIntegralConvolutionPlot[{{Sin[Cos[3 y] + Sin[3 x]],
3 Cos[Cos[3 y] + 3 x]}, imagescale}, {x, -3, 3}, {y, -3, 3},
ColorFunction -> "Rainbow", Frame -> False, LightingAngle -> 0];
tex7 = LineIntegralConvolutionPlot[{{- Cos[3 y], Sin[3 x]},
imagescale}, {x, -3, 3}, {y, -3, 3},
ColorFunction -> "AlpineColors", LightingAngle -> 0,
LineIntegralConvolutionScale -> 2, Frame -> False];
tex8 = LineIntegralConvolutionPlot[{{Sin[Cos[3 x] + 3 y],
Cos[Sin[3 y] + 3 x]}, imagescale}, {x, -3, 3}, {y, -3, 3},
ColorFunction -> "AlpineColors", Frame -> False,
LightingAngle -> 0];
tex9 = LineIntegralConvolutionPlot[{{-y, Sin[x]}, imagescale}, {x, -3,
3}, {y, -3, 3}, ColorFunction -> "AlpineColors",
LightingAngle -> 0, Frame -> False,
LineIntegralConvolutionScale -> 2];
GraphicsGrid[{{tex1, tex2, tex3}, {tex4, tex5, tex6}, {tex7, tex8,
tex9}},
ImageSize -> Large, Spacings -> 0]