imagescale = {Automatic, 500, 128};
tex1 = LineIntegralConvolutionPlot[{{Cos[x^2 + y^3], Cos[y^2 + x^3]}, 
    imagescale}, {x, -3, 3}, {y, -3, 3}, ColorFunction -> "Rainbow", 
   Frame -> False, LightingAngle -> 0];
tex2 = LineIntegralConvolutionPlot[{{Cos[x + y^3], Sin[y + x^3]}, 
    imagescale}, {x, -3, 3}, {y, -3, 3}, ColorFunction -> "Rainbow", 
   Frame -> False, LightingAngle -> 0];
tex3 = LineIntegralConvolutionPlot[{{Sin[Cos[3 y] + Sin[3 x]], 
     Cos[Sin[3 y] + Cos[3 x]]}, imagescale}, {x, -3, 3}, {y, -3, 3}, 
   ColorFunction -> "DarkRainbow", Frame -> False, LightingAngle -> 0];
tex4 = LineIntegralConvolutionPlot[{{ y^2, Sin[x^3 + y^3]}, 
    imagescale}, {x, -3, 3}, {y, -3, 3}, 
   ColorFunction -> "AvocadoColors", Frame -> False, 
   LightingAngle -> 0, LineIntegralConvolutionScale -> 2];
tex5 = LineIntegralConvolutionPlot[{{ 1, Sin[x^3 + y^3]}, 
    imagescale}, {x, -3, 3}, {y, -3, 3}, 
   ColorFunction -> "AvocadoColors", Frame -> False, 
   LightingAngle -> 0, LineIntegralConvolutionScale -> 2];
tex6 = LineIntegralConvolutionPlot[{{Sin[Cos[3 y] + Sin[3 x]], 
     3 Cos[Cos[3 y] + 3 x]}, imagescale}, {x, -3, 3}, {y, -3, 3}, 
   ColorFunction -> "Rainbow", Frame -> False, LightingAngle -> 0];
tex7 = LineIntegralConvolutionPlot[{{- Cos[3 y],   Sin[3 x]}, 
    imagescale}, {x, -3, 3}, {y, -3, 3}, 
   ColorFunction -> "AlpineColors", LightingAngle -> 0, 
   LineIntegralConvolutionScale -> 2, Frame -> False];
tex8 = LineIntegralConvolutionPlot[{{Sin[Cos[3 x] + 3 y], 
     Cos[Sin[3 y] + 3 x]}, imagescale}, {x, -3, 3}, {y, -3, 3}, 
   ColorFunction -> "AlpineColors", Frame -> False, 
   LightingAngle -> 0];
tex9 = LineIntegralConvolutionPlot[{{-y, Sin[x]}, imagescale}, {x, -3,
     3}, {y, -3, 3}, ColorFunction -> "AlpineColors", 
   LightingAngle -> 0, Frame -> False, 
   LineIntegralConvolutionScale -> 2];
GraphicsGrid[{{tex1, tex2, tex3}, {tex4, tex5, tex6}, {tex7, tex8, 
   tex9}},
 ImageSize -> Large, Spacings -> 0]