Aeroespacial y defensa
Modele y ponga a prueba sistemas complejos tales como vehículos aéreos no tripulados (UAV), robótica espacial y dinámica de aeronaves. System Modeler permite el diseño a nivel de sistema y de componentes, así como pruebas y verificación continuas.
Hohmann Transfer Orbit
Space missions often adjust orbital paths for fuel efficiency, solar power optimization or avoiding hazards, using strategically applied force pulses. This example demonstrates the calibration of such thrusts using the SystemModelCalibrate function.
Modeling Spacecraft
A spacecraft is modeled on a designated orbit and its trajectory is changed by using thrust generated from burning fuel, which is represented as thrust forces (boosts).

Model of the spacecraft.
Simulating Different Thrusts
For an effective orbital maneuver, two key burns are essential: one to leave the current orbit and another to achieve the new orbit’s stable velocity. Let’s explore the spacecraft’s orbital patterns while applying one-second thrust forces, denoted as f1 and f2 applied at t=0 s and t=4200 s. Simulating this with different thrust levels reveals the spacecraft’s potential trajectories.

Even if the trajectories look smooth, there are significant fluctuations in orbital displacements, leading to variations in gravitational forces.
Calibration of Boost Forces
Applying thrust forces strategically is crucial for smoothly positioning the spacecraft in its desired orbit, minimizing fluctuations. Use the SystemModelCalibrate function to fine-tune the thrusts for the planned orbital maneuver.

Interactive SystemModelCalibrate function.

Simulation results after the thrust calibration.
Wolfram System Modeler
Probar
Comprar
System Modeler está disponible en inglés
y japonés
para Windows, macOS y Linux »
¿Preguntas? ¿Comentarios? Contacte a un experto de Wolfram »