Text Recognition and Language Identification
With TextRecognize, you can extract the string representation of a text for a given language from an image.
Copy to clipboard.
In[1]:=
✖
text = TextRecognize[\!\(\*
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJztnQtwFVW679e9dXflhILMrUrVqVQdihqmtHTUsuY63OFad26J1h1HrZrL
HEDn3HMZX9chyuiAKOgoB/WAimd8lC9EmHMgExVGDi9heFwZclBBUF5BAxIS
2CEhiQST7MQdEpK9+65vPbq/b/Xq/QiBbM6sf5XSne5e6+v+unut7r1+/R97
74xJ0/4jY+yRv+L/m3TPYzfOmnXPbyf/Zz5z+28eeaD8N7+679bfPPqr8l/N
+m/3wmql/4GxD/h/npOTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OT
k5PTxVLb7N+CHnlsxclsq6b+afqh/BZkUNdjjz/fn8uKR2ZlXi+9ZM7jz5zT
cwPzf5tjuV7q9fLsUccf+nWwUnpZDlvwgGYuS9sXbZ/JYxvM0cKqZr7Kv868
alcZq8pvQeZ6x5/LvprnLc2yXnoKD/2AnjvEci3XS5TmEDUvL1gppy0goGsi
IqiA2AZztLBqGPvptGnT7rqW72rs44yrJkdHVBW5IIN4xibkdC1UsvGZr7E7
eeRP6rl5kLHcrrGcoq4xMrY1e7k8oKg9E/symKNlhLRTTDTcztiI1kyrDmnG
vn7/+tyObE4ZG9UlZxJlFzJj/Qf3d2cvlwcUFcFQZUxtn5rK2Au2CJrrGvpg
IlRVW/2JpHVBSL1NdU3fBLNn6r71OkvlfvU21zX1WDcaaK5rTgUZ07UFRcjw
IGNsk5zZwoKMnW2oa+oL7wWos74h4SXp3YnE0R2vaxZ3NnF4vm2oMxoMEgsp
WmYsxdcI/sa3PyVaNiNjdI9yFTqJmhgr6eHzO2Am9QBbCJW/vrMUjsKitJ+Y
vnLGbk153mY4n9nDCZKx5jL2qieyX3yK/9tawl7iR/dB0U5evof/5Vn2atst
jG09USpWPPF3TJdiKPU2LIitXCYzENTmF+EfoP/yQzYx5clq//tdcv0zM0XB
85KesReeV/szmJ5SPQZljMTReK+o+nfnxOFZ8wzM/bCeJ3WsPDZBLGbRKqCf
/ltZ8LfOOTB92YdmxtAeDTZjqUmsuEXP8/vLAnX+Cv1eJ6aP7+9P+XF4US24
qgtnjE/CTRzuTnDab4FOwZkytWqsxktPZb8czSe3VrP7+Tl4vEQtCvUW4IrX
y/pJbX4R/gH6XxWsqFEcasYqHxLrn9AFjzpt7IW3P+hr+RkjcRzWiyecg8Oj
C+rSfQYcCy1aB4T/1liqZt6jGUOlDDpj3nJW3KrnebkqYy+19LwvdkVU1XMD
Y/fy3fqIsSs+Tdbxxm8muSvOFRcXdNme4MHPYFed5dcEe+xkT8MMxtap3Zmz
qlmuvZSxp5q79l/P2CdGXCsZK96WOL1IZgzXZhTBZ29sLpEHbCk/5e6G9fvH
Mjb5q64D18PtILQXPJzu/WNwxnAcfXzbh+I9sG2lyNiVu3saboMzRO5nKBa/
aJQx/28DVzC28HT7Wn6+1uOM4VIGn7FKPh3K2BswN58fCvjTziTfndn8DjRw
ExsJDRPc/lpwxj4VF9dyHvTVfV7vGPaUl7pZ9nZ7y9jTosSR/pMfv1yK2j1x
P15Mw+q/jBXVwsQqyBipjRYhmo0B/h+/Ynmefi7bfX48JsK9kd/HWA3dC37Z
zxY7OCbYcxLHJ4xNh9tZK2SbHw5RM7+9L5DHOhRLUHSQseBvvLS3YGYf4wUE
GSOlnE/GYrVmxkYm5JLiVvjTuzeIa8fzTurbAF9/G84Yv3PMhCNwV0nRCa+W
Md52xTcfhR3ZxtQ5sCOonZ/bt+3mt9jEaeN2fkyfezwL4/tJbUYRIkXbxSMZ
f2LYyqse38+v7dhXYik/gV4ge5EuZzww0EZ6jek4YFu5wq5/WQUZW+wfDrGf
ZizoAPkBob/NZSPFbQ/iOhdkjJSSLUdUNSTuEaG7ony00BkDvQR/gNvetd+9
9trv8n8X4IzxHf7O2eTo2Gc38Xtgpep2N67+h7+FTUWJV6N+lXx+/9miLy1h
qR15me8lqc0oQmSMnydPwh15VJeYTU3Rj0SwG2QvxJETi9rQ8zCKA1YIiq9R
9+sgY2Ys6AD5AZHqWKz02muv/T6/y7cEGSOl5JorPyQdN+l56IyND2VMvGAI
WmR+kyG9++389D7GRvXMYzP50z9cKI3X6zXROaB04l655L+eDoW1Qk6t5CGQ
2owiZIzzebISkDYxm36UjTrr6d0ge8FngkVB1EEctHhyOMQWZizjLRkj1fkq
QhkjpeScLBKSJ+50V/dlzlhs91YGnQk4KZfu3c2159D+Y2TfO8rYe6vZxPRG
dk2r6Fv18AZj0urD7V2kRF/dB5ZMYvJ5Acl/O8TvYuP7SW1GEXIWwq5i7KDK
2FTjGhtPrjG56Bh+OA7i6Pcvwt6ubkvG7LFEZYxf7eN2C+0/9HlvkDFSSh7p
8swn6Deh6RG3AX7PsGRsnVhrgWiJ5X343J8295KM8UN894N84UlWvETc0Hlw
z4udLgtnrHrVfvinfjQbgR6wuY7z5l9M8C7I+H5SmzVjfLX//Us41DJjvC0S
/RZvj2zHUMZmQKcNtBVlDMXRNk09KvBbzjXnwhmzxxKVMd5RHiWfkg+t/wr1
PEgpWZNE5L+l6uC9b5mWhTD7IrNlrErkiu0VfR0RIu+FH6DvPMR7h4NwDOVR
1zXwNRcaGRu4TF1bc+EFWUtD3H8FwMuPHYSJNbqv6NdmzRj0c0VjLme3q75i
H+8pfUH3gncj74M6oddbZYvjA9W5airh4YczZo8lMmO8rwhvCrze0bwK2lf0
S8k7Y3M2r1//rngtsU6EFlvb0/w8i8qYt5rfF3sgLyN2JNr/CA8dNGP86hQd
jrlMPuXya+zK6uSpl+GOnaKHm1+PrPxo4jR/dLnmXPpmhl60buD3/Y2J9n+W
z2O4NnvGWviJVNyoZ+GZasrR5MEfq+cxtBewqLy+54sfo+cxEgfvxbCnWno+
KYO7TThj9lgiMwbVPXWy5+jtsHPoeQyXknfGtGIittf8+QUevwuHM8bvFpDM
x/Vq24z3itA9+jl/oOG9+RFtfL5nrF7zb3grQQ93o37XwP4ktguKST/kx8E3
wLWZGZMNEzTxE9P+8TqO3nnQvfCOBntcZYvD+zjoWMDpZmYMx2IULRRVHc9M
hf8igpQyuIz94MGN8tVqSrw+uXzPLLg7vu53VEeIjIkmrrkU5tKrxOuXyYc9
f4HSBnhZwFcrYfeJF2vNt8CK1322GKI2+oqN94nab93twftCkvj3xFFcuEhs
gGoz+4pPyNkque966RnxNo/9I7xsJ3uhXxtesWkMeqzDcXi1t8N00ao03DBi
B1TGFur9RLGYRQsZf2sRRceWnIMjM6HfVsr56mxD/OuIH1Gp2uLx9pxK7G4S
KzbHLa+qe5vjX6t35ivpTwDp5jh6+Z57bbrgpnhTxA2nuyH+jfk3FIdYoSnT
IcgvFn5Am1KWv+e7RwWnXSVFp4Y7Bqc8xHseq4Y7Bqe81Fo73BE4OTk5OTk5
OTk5OTk5OTk5OTk5OTk5FYjSb86ZKYfn5IZ8CjjUoo7HZn6iSpnziPxJtuux
R94/n9B6npiFBofJ6KKqz1sZ+FeiIa52CATDo9R4wZyQz4qI0SQ1euh1C2Ns
tZjao4YSDVY0HjknqudH+1/Pp2BQBv7VEkTUXg+HYOSYGsSXE0C4NGJHk2PU
+GoYACeHG76Z9+Auo0gSj5wT1fOj/fT5FAzKwL9agsgGi15EiZGFCs/MKWOd
++zDWIFCEIMzH2YAD3pi3NWofPkoIlvGRPX8aOc5Xj2sDPyrJYgCytg+xtZO
lUfYP0I21tWHQwN11xPedLUccdgLbFasxhNDuu8QmxCstrO+Do1IocUaJfJ4
PgbGVQ4VQvlLTbVmDBfWEQ/G3+BpoGA7xUSIf6XVU2rYz5jlOFxkzWAjut8P
xuVV2VlXAodOgJHuI+sfgT/9sN5f57gENWpZ0eYytswTJ8MfPYrVqsLv2Vcm
xoahYm0l8njemyHW+JMXHLoJCQltCBRHCe5vqLD08hLrtB5Vd+NBk381qzep
YZUxVMdwqb2Utzm88wGjQmVwNtY1BIcS3lSJX1xw4FawkuQkMd5zqRj/jrHa
gFkV4y9xsbYSNU/DBDjnH7qELDHWUusv5m0bKiw9V/99G5lGI1d3GPyrUX2I
GpYZwwEPl1aL4KfKJkgEZ2Fdw3Ao4U2V0jPE2NM7+SkgKInUFAHCYKwW7phP
NXd/WCIyRoq1lQgZi63pFKO5v0CHLv5ZGSs/uKfXO7x7z+69gDb/CyksUcou
/0hAuRP68TQMfy3elGhfBA0t5V9p9WFqWOw1CXiYNHCTaMK2SBgRgrOxrmE4
lPCmWhsgyfwCWAfDnz+DqTkexWr5kZinCpIcQVCsrUTI2Oeq5On40KWnoU9Z
VAgICxdWo77K8jA/cfA039siaGC9x3l8lH8l1VuoYVEtCXiYdEQ+MfWOFj1z
fY2ZrGsYDiW8qdZJKGwfcKtdo/nUIfnFAYTV8qtQcr/88jOZU1uJfFp2Xfgh
HNWFM4b6itvEZwFIYWdKWWxRY9obaD+dSqDpuH7s6Hjn7VrKv5LqLdSwqJYE
PHRJyEvzeVP7uxdeeIEJZlnjaIyyrhY4lPCmWn1j2a3pNwBL5dfAhFSl/KoH
wmoDFi/MnNpK5NPqswvL6cmOMnaUtzzfGDGemgbVFT20lXcKU2j6EOZnKBNL
qrdQw5USJUQBD20iclWX7hUwcfapvqLJulrgUMLp+JrLRiVuFn9YzUZ8c7c8
ERFWGzy0hplTW4kBhAHrWzPWXiafJGhh6XdVF6GCLwmmyVeLKDdEqrdQwyJj
pI4hTEMe4u3XZZMnck1miDgyWVcLHGrP2BZWtLFMHGTe018/VtCDGKsNuPDn
Q8xpRMbUB4xei7jG+m9S3ziihfF8nNwyFzq98M7Fnw6I+K6ucxkyZqGGKyUS
T+oYBgGtrvCElwEiknfFMOsahkPtGWuG4yK26hPYGOQOY7XpctXJ6h8bYk4j
MvZz3Y6NTFgyxhtG/eYSF/btxvXwAqB/MV+Kp3mrPUesI74kEZ0xCzUsqiUB
D4vikpMD1WrckrKuUmE41J4x8cZLb606XwSr3c4kVVbBQsxpRMaYYLqqGO+C
0IyJvmJFwOrjwrZBV9UT76QXbkfT/OGi+ISMLlabIWMWalj3FYOAz+fAD1qv
BS0xD1IGRxhTtTAMh9ozBh0ZdXZuZ9+Ve0Ww2j5+iyz/8thCxkLMaVTGYqs6
u/kDENtFevdT2ZXb9/T+mf/9z/v3cO1uw4Xxe3LxurauI+Y0fM1nxM6e00/D
w1mGjFmo4UqN6/oBD4eSY9D7hUp+xxDBEcZUKQSHVtszxk/o2Bdiqq1EdZcJ
Vpuq9QuHzhYu1lYi6hgt0P2iCvVNAV7TqSlBT2ArKWy+P50k0wMTdcehzuBf
afVhalj+2oLrGA7xO+FT/kxrKftRu+ibEcZUyYRDCW8aqK1UvObwRBOpcoex
2n7vDByL761cBvw7KdZWIj+lPnhVpHetp3uOonqv8Tbo1KO+2w5SmHp9GHuu
h057qbfFzN3Q0yP8q1F9iBqW1eI6CkqEMVWKgkNzEMJq2772Brq64f2z/+XK
bMX2N+eI+dLCOuJN7WnLdLo1Hs/pq4YR1Ot5HIdLUYcZ2wD/fsHUVyydClww
QuGVw0d4r0Z24JwKXh/oduf14Y7EKUcdn/cTfp09MBTfsXBycnJycnJycnJy
cnJycnJycnIaFrXNnmVHi4Zd0pk0koxcOee3Wr82sNLsoGnn8+PGzSLl5spr
Dr+qyeeUC0nSZzSKjEyj8QLm56yzgqZinBelFnPlNYdfNQWbMQRkWpS+kxX9
32lSU/bZtswgfppOXruc/KCaK685/Cr0jEXyoPwIR/2GnTVjNSxmujHlymsO
v8yMUY9Swy8UoZUYeqTb9NfXiS+Pd9bHOzNW3fbVCRhuMdBQZw6bsDmTGjah
cISNi8+3Kw1lzLQY3Rd25bXwmr65amGJZgzBlKapJ0YrCfRIt3n1ACwq2t3x
9/DHKW26ZP+uI45WDRsZfwJWuL9/NawfW41CIs6klXKzkE1o6JpAdqXJKItW
qUNy/N1C0+QV8ZrUXLWwRDJGPEqpgSdGKwn0GLGN0gTkLimP8FI1mtNQYO9A
nUkrTePToDxyV8R2pckoi1apV+X87GiTV8NctbBEMhbyKPUBRoJWEugxtM3i
jtO/4P+MO3z2QBlxl6Tjb9m4Qz3/Dw7Q0s6O+cg1PUmdSStN49OgvHH7DwlV
H05Tu9JklEWrVOPeFaxo0576aJNXw1y1sIQzFvIoDQBGglZi6DG0zTJPGEGV
wBm9JsoxiJcgVuAX6x88wU/7o4ANZ9JK0/g0KM8XD4DYlSajLFp1HbWsuM3w
7yO7a5irFpbINWZ4lCK/UIJWYujR3EYM9NWjeo9kyJj4+NEKcegwvmc6k1aa
xqdBeShj1K40GWXRGuw0xBVt8mqYqxaWjL4i8SglBp4I1MPQo3UbPXK+JkPG
PvFnaMYMZ9JK0/gUlfdNR7tQwrArTUZZtAY7bcsY2l1qrlpYIhkzPEqJgSfK
GIYerdvkkrEqf4ZmzHAmrTSNT4P10BMvnUtGWbQGO23LmG13C1A4Y3aPUu0X
GqCVHoIerdvYMjY1x4wZzqSVpvGpXo+aBRK70mSURWuw01kzVriP0zhjdo9S
5XuN0EoMPVq3sWWsXJ22L2bJmOFMWmkan+r1aMaIXWkyyqI12GmoNtrktdAz
ttOcph6l4qgStBJDj9ZtLBkD4gc6Ga2lmTNmOpPqvqJpE2o8jxG70mSURWuw
o1BtMtLkNchYY7zgLNH4sXtu03qhdSutHqXSwBOjlRh6tPqa2jLGC59yqntn
GcuSMcOZtNI0PlWr8U2u+GC9Cny/R+xKk1EWrcFOq4xFmLz6M7XmK/4CEG6Z
f0M8SqmBJ0ErEfTYY9sGZcx/Bmov9QsIeEhLxgxnUglkhm1CyeuV2dSuNBll
0RrstKg20uTVz1jNsLGY0cIZW0hgSsPAE6OVGHq0baPvNzX4jWvteFhx7ueY
h1Rl8yP0UhAScSbdYBqfKpGMwVM4sitNRlm0Bjstqo00efX7ivzo3FKwDZpU
pEepiVYi6DGTryktI96QbRVVosWZNLtNaLRdaeS2OZu8XnpyaOWlJodWXnJy
aOUlJ4dWOjk5OTk5OTk5OTk5OTk5OTk5OQ2rxE9tToNS22wBpj7y2Ao6ajm9
rDy7BeogdQYsvIpeyu3XzSzKm4aVsK7SyplvXHI/aFYHv72XY3M9ybReELWq
ER+jQr8zZ1P8oUfN35LzpmHxjvGNcxrGMRQ2q0OmGsZ+Om3atLuuhXEbHwd/
5zt2gVic9DTGHqvZM3oQv2YfCtvb5D18F+OAuY5LHAqb1SGTP16x4XaGx9H0
H9x/gZqaZJmwsWgv059Zz114NJ1S3oNBB5WxIbBZHTIFY4JhEK0yYetriAe3
d0LWEmvQjJ6lnmGf2h5X32NvU7elZ/0LhkCvmYpB15iuO0zDRkcVgnXDGTP5
Wylss2pf4yIKjeJuAqfCxpIRZ95j7JrusdJoEpG1hjVoFs9Sap+6XrZdT/b5
36NITVJtSAC9ZimmUo3RI3VTGjZTVATWlTIzFoSCIeDj2mbVs9C9F18oY+CT
1MJPY/CGveYbOBUzWYNm8ywl9qlL9PJfpFWN6XeVxw+CXrMUUyEnZpO6Dfg3
OioK60oZGUOhYAj4hLZZtdG9F1+YlFgu+UvGrlu6o3u0zpjdGjSrZym2Tz1d
wkZsSyQ+LIGmC2pMAtd+NTSUGHrNUsy5A28KGpbUTUOMjsqAdaVoxnAoZFC3
b7NqoXsvvnDG+G2nCnbz9bRqoDNYg2bzLCX2qdUqBe+oYnYKznxkrQG9ZivG
OyaRTlw3DTE6KgPWVaXjjJFQKHWgbFathO5FF81YrLaG+QOxqyhqSq1Bs3qW
YvvU/h3boMlqL9eUxNlPNtwrWgYCvWYrRvcVcd29JMTIqExYV4pkjIRiZEz2
Fa2E7kUXzthSaWK+DqZ1xiKsQbN7llL71N49b9wPj3yIa6lg0s02gF6zFiMz
Ri1ODfg3IioT1pUiGSOhWDNmJXQvusyeh/4sic5YhKVads9SbJ+afluvi4sp
k75+vmZnK0ZnDNd9yqCIIqIyYV0pkjESijVjVkL3ogtljF/0V/eh3cyUseye
pR6yT10NH7PZFU+RYlJw2hPoNVsxKmOk7h4cYnRUJqwrRTJGQqEQsMqYldC9
6KJP0G96OWYsu2cpsk9tm8JGxEPF9I5h09MEes1SzDe6HcN10xAjozJhXSmS
MRIKhYBVxqyE7kWX/5aqYwYz0pIxY9k8S7F9aot4L+F5XWNwMRvgFQuBXrMU
A5sWd3jU4rSfhBgdlQHrShE0l/K3BAJO3+n3FUOE7kUX3605m9evf1d8Dmyd
l3PGsnmWYvvU3in8kelMYid/JCo6JFfubX+LCdgcQ69ZihFPhAs/ryd1G/Bv
ZFQGrKtKR2ju+iThbwkErGxWrYTuRRdqTWNVnpGxTNag2TxLsX3qBtRk7+Ur
f9wsJuEXDAy9ZisGsGTR5qO6aYgZoqKwrhTtqRD+lkDAYr1Yi5XQvejSGfvB
gxu/lfPCcl6RqZmsQbN4lmL71PRyMTm/jp+yVXzlL4/wues+F6sh6DVbMV56
ifK/RXUb8G90VATWlcIZM/lbDAFLm9V2G917aSmbBSiyTx1oizfBlw+Pt4j3
tf0NGHPNAszaXFgz1B29xAbrGsKh2CHg7HSvk5OTk5OTk5OTk5OTk5OTk5OT
k5OTk9Nfnnq7ui8t8G2gqytfLubfkTpeEezYvZ+aC/LCHwfJdB6ZFRibRpqc
mtolfpv83tyvBlEh17d1df1eY9gOLv6QaaGah2zBfzzlB9fts618fvrE/xV2
tvE7YF744yCZzqVoxESUyamh7p/5ET83qDvDEhZrSZayZ82/HxqMQaXGNy3B
i7ESW4ec7zzOS520ZtcWYH4qjWDywR8HyXRWouFnUSanVDAYij1atXfFTxhD
gwvyUAUrakmWhanLmkFlTOGb4eD5kqLFfzg85HznG4y9IiY2MfYd2jbkhT8O
kunEGYsyOaVBzWDs+8Lww9vMU1YziDo3TFzQ31f+fyrMvw8uYwrfDAfPl9yB
VhgqATsiMY10uQY2tINoGH8MiwKRoIFmbGQaDUzy9ZpTJGNBUIgKJZwn1wnE
/q7woVJcDd2C7wz6PrqCT7+Nn0ik0RrSMFVkjJdkIKIZ9vdM3bcY3xTyGc7U
JHELCK1wnuIZizXIye03/ui0hx1ECf7YXCbGbgKIA04mrSXgKYCAyN6xYoiS
9EQt2viigVKawGRKjMSPrVyGMgYmp5QKpZyn0MvKaw7UWSK3RtXgLZKjY2tm
iCV/gv1S8Ok5zIsSw1SesTXPBCGCTpZIPAbwpipSkfJG/Y4eh2U6tKYeFkv+
6q/1CkOm+eB4ieaRgyjBH5OjRUgJHtEmTwwMPUCASOlznnrI32RBJmASRowr
4YyN76fIJeE8hfoug9HcWl3iQy64GryFtiFjAirT8Ok5zIsSw1QLIsp3V7p4
CToNo6HKG3WUmI+1hBxaEzKQ/1SqVxgyCdrnsuc+bFRHBDmIUvxxrri4AMh5
QrQmV50lQKRERtbw0+mjbxtniIxlwDhXMla8TXin2jLm14k5T5WjMjWqOxCp
Bm8BGYut6Wz/Z17kF56GT7/GvCgxTLUhovPl8M3eMeyOdAgNZXNWfabxTdOh
tf/zz2+DJUf1CkOnXeqs/N6zcHfEDqL9BH/8VFxcyxkAMLAHT1EgUmRs4CZW
DEiE9P6KBib7L2NFtbBolS1jgQEpATSF9ODTvrcWC72eoMQm3gIyJkax8m72
dE/Dp4QXJYapFkQUtoLG4CCMAjbRUOGNqvBNi0OrGqyvVxhC9f/bXJW0RR5x
EO0n+CM/u2fCzeCukqITMJx6DwUiRcaOaxKummXEOI9pkLh/bDhjqE4CaArV
qh59l7pB8W4TqQZvwau6Q/QS+JEc1aXhU8yLUsNUGyLKzy24LT4LN0oDDZVD
i3VXMOzQqpZcoG+BnP5YGFRtIg6ilNDke/eds7wx/+wmto7/ZVQXBSJFxvxn
UHD8y4BxBlTqy+GMTSAj/VnAearN54h/b7qR6/shLhNvwdeVBxCQ/BYNn2Je
lBqm2hBRvim/LfJbypMhNFR6o+KMUYbzAmWs79Qp1RM++wQ0v/ihmWIj3nYW
++oYG9Uzj83kT4UzDcxAZMx/osmCcfKZFbKOleGM4ToxoCnEr3TkIhvmMvEW
2tRKrqfhU8yL0ncEVuCwuUSyvwdCaKjcEmeMMpwXKGPVQSt7bgy/2LGDqHH0
OsrYe6vZxPRGdk1rmQRfEBCpMyZLg6YgA8bpX4v8ITBjxjCgKQQucL7VD2DA
BpeJt+BVbZIrviavMVEn5kWpYao1Y7xNuvrcy3Ca2NFQnDHKcF6gjB0PiF5+
tx/fix1Ee+nR40f37gf5feYkK14iGhsCRIqMHYMmHrSFZcQ4j+v1oJnIkDEC
aEptFR1xqWoW4jLxFryqn+t2bGRCBZDGvCg1TLVDvVtYbP8V7E0vAg3FGaMM
5wXKGG9w2GY5uRvOS+wgap7vW+BqPwhHWR5wAkSKjPFFsYP8L12jWUaMkx9C
sR48DWTIGAU0paD2B+QmJyWOh6s5h7eAviIwTF4V410QnTHCixLDVHvG4AlU
flnCioaqHqHFoTXImFihpSGro15uWg0PWF8mOuJv8Yk/EgdRM2NtpfLZci6T
Nz8CRMrnMX4Eiv61sWq0aHozYJwb4L1IQjwpZcgYBTSVgNy77s/f9DS8Jdsi
SmziLcTz2KrObv4AxXZ5wTWGeFFimBoBzsPuCmtGKxqq8c2wQ6vOmFwhfTMb
os8fpp8IWkswdkYOogb+KDpLcJvZxiQjTIBImTFU2tOZgMl08G4kyFhFCLkk
gKZWjf/HmPx2Da4Gb4HeeSwI+hWEFyWGqTZE1BPPYurFGKoI3xXFK42wQ2tw
jcEKcPCqhiRj/FHkNlnJrfInTeQgauCPsLPwgwzvPt0n34YiIFJ3zDYD2nj3
vjH8es0ETCrv1IWLUGdNmJzSOjGg6Svxggz472p7y67qodXgLXhVH7wKM8Vr
vQA+Jbwo2V0rIsovrRvkczGpKOhlKnwz7NDKV1mIVnh26DLmeZ1f7d13pNOf
jXYQDcsAIntP9Xk9XfxU1+FFA5Pp5nhThh8F/BJtgGb/8b17j+Av5uFq/C1k
09oc8jY1eNF8djcrlpqB4Vx5wT7jex5Kq+fK1DToogy38Ndxhl+7SooKzr7d
gw4wG/fRkUO/ZKH3tcOggsoY73msGu4YbOq+QbW8owrgfLqAnxMfhFprhzsC
u1Jr7xzH2GXLC8FannzZ3snJycnJycnJycnJycnJycnJycnpL1vpN+fMlJ9Q
91L/ND3729Oc8dfzVd62pvmobfYsjXylK2YUjk9mLmot8X/P6irL4ReKaPzV
Yk16Pr6hedua5qPq4Gf8RGkB+WTmIjDPU44LOf0KGI2/WqxJz8c3NG9b03yE
kExjLE7BSwxAVABGThmLxl8t1qTnM8Yyb1vTfHQJZ2wfY2unspJgNIsXhllB
YYI2ZFOKrrG2+jo1AglxpZ31dfir6chEtCMefNkcqFoxUCjM9Z5tqAvG8+Bt
8DQ1a6VhB6au1oz5/qxmkcNueIo1g43ofh9bSVhgVkKUCoLUYlOKrEk3i1Fg
1+3w9KhBGMsmi71nX5lpIipZXMXFqoFxNx4M25qemSnKmpc0tkHTBpaLww64
WiFLxhBvS0IqBMNTpPZSNh06H2KMusTAQjArRVfF+FcLg+pbk6af0cuWiHHi
chCmT7CKWye2GZ2rF2zDg093mLamJ3Rco06Tbch0tBOqz9XKaGsC8rNXZgzx
tiSkgjA8RVotjs1UyQyIjIVhVoqu+hkzGFTfmnQLX+2dzjaAZg942je0dwwU
2/1hicgYNhHlXbXLPxKMLb92N/DFmxLti8DqmDK2/WMZm/xVFyCwt6bwNng6
ixMqcLXBXXHp4UOgL/4sRg1jf1YSUkEYngYauEk0YVskoAgZs8CslJDVGQsx
qMqalBfJdsHsBkAUNFfK93ueKqK41XQ8fRKWPMxGJviCIjF293HGPqO2pryA
idAP6eWZq8Hb4OnMTqiCq1XCtJfIGOZtjZAKwPA00BFJbPAbAwwO1deYAbNS
dFVnLMSgqr6iDxulJsIIfdlXTM9Q+5uawlciACo/oWOLGtPeQPvpVFxv2/HO
27WEsQUEVn6J6lPes8Xb4Ol0RidU/KwQyhjmbXGRhWF4Gmg+7zv87oUXYCz7
HpWxMMxK0VWdsTCDKjNWzbT9UKVCuBeIItTxgmNJAFQYQsxY0UNbO8XHDAIE
hDC2PNOqAGELibbB0+mMTqjr0I7z2fXd7aBEU5nch4C3NUIqAMNTX11lwXk2
3e8rmjArRVd1xqpgkf0ae0fOIxfK4Gm4UhuFK/Geyruqg1BBPzVE2aRHkXnp
ArwNnqabmGCv72PlWfqKxJ+VhoRiHXbx9uuyyRO5JotA9fOYCbMSdDVbxg5F
XGOKEn+er2SaiKZPbhFfPDgQ3Hm6us7Rwz8VX2N4GzxNNrGDvX6sRsaIPysq
sjAMT7UAJVYDrl8G1kjeFcMwK0FXc7jGpuvSg3asXL0J412+4lYCoH67cT08
tfYv5k0qb1bFxwREP4BmjLdjciT0Ht6O4W3wdA5OqH6sNGOEt8VFFobhqRZv
6Ceq7lMtU5/lsMGshJDNmLEO+SggPn2yWfYVJVe6nUnsrEL3FX0Adbui0Vt4
V5w/AxSfkJXHaunh3676in03MPYF3gZPp7M7ofqxGhnDvC0usjAMT7VeCxp6
6JMfEL17C8xKCNlMGRPWpFsEztr2ewYYpOZK+/jzWPmXxxbKdgIDqPyaLF7X
1nVEFL6cL9jZc/pp9XBl2JpOOZo8+GO4W+Nt8HQOTqhBrHpWX2MBb0tCKgjD
Ux3qmOCNBbxkmiPuijaYFaOrFVFup9qaNHjnAU9DGjyt9YstNkxE5/uFJ72B
ibqrUGc4rwbvYkadptug6QxOqNnaMczbfo6LLwjDUyV+hJ/yZ1pL2Y/aBRxr
g1kRuioIUiuD6luTbv4hrH3dx+Kv2jf0DOz591YuY8DCEgBVvkqMPQdtR+pt
MXM3PLwZXO8Z8ZKQ/WO3sQ2ejnZC1VytEuo68n14yeBtSUiXguGpDWbNTpRi
nQnRpW1fewPweb0Z+icUDKB2xJva9fuIdGs8HvHStbdJELHhbfD0oMOmvC0p
8i/R8PQwYxvg3y94B2L4AU6n7IKxCa8cPsL7M8F3ipwKWh/o9vv14Y7EKUcd
n/cTfp09UMjtt5OTk5OTk5OTk5OTk5OTk5OTk9O/Zw10/yXb1UbI6rWK3WWz
af3MZ+SAt/0PP/Ku/NOGhy0UZ/766C74EeB/vBFygqQgroSE86GAM4C81kWi
bFsFnc+PGzfr4sDHvqTXqvnXpbkPT0nfqa2H5mmTztT/xI5vg1Xf3/sjRswf
AiiIKyFh+WVzxfZawd+o7bMvqvAHvhghgkHrhUOCrVJeq+afrc6XEVqtfnYG
KkWONWwvHYIfoAEVir247dM3ShgrMQAhCuLKAbOCAtZsrxX8jdo++yJxOCyY
cTVjk9cuv7i/tSuvVVP5ZOyYIkROwuUAH8AHyGTZeUeWKJVubeKzxO/TZRTE
lRkTFLBme63gb9T22ReJw2HBjGtY7Evzb0Om3qa6JsudSnmtBjLcZQln2l9f
Jz4a31kfDz6cD75d4naxBjIm3NuWqPFMpM5IOpairGe0Tfohf/y7PxYsAsRF
WLdme4NrLEeQ15d1ET2BA4J335C6nRKdeVA0CJfvCcaDpR5gC5XXalCt4S4b
cKZ8R149IBxqd3eI9mVKm7+PkkBKl7P735SOp5MErIbqjKJjSRXaGVY1qjxj
v5ZTffePA1gsEsSVGatkExKK7X1NNn8LcwR58REJMb5CImPKqDYgeA+VqGou
RMI028LPfT3mMlHGFiivVd9k1XCXxUwsAkikfLspGNpRJY7bimrhWcBLnk7r
jKJjaRXKGVZlrBkGRaIR8NEgrs7Y+IRie1+Ri2bnCPLiI2ICuyRjcEwQwfuq
quZCZOxZxh472dMwA9gqPDBbe63qA0PdZTFnKnZkccfpXzAwKj57oAw17XHx
1Ql+T/+K7/Ni0R6vo3VG0bHhKticVc2yVHn23POHg+qWGQ3i+hnrV2xvtwJ/
cwR5yVB1uiiUMUzwNu5dIfnioVfqZtnN6S3jPSk6lF4bZwlRd1nCmcKOLPOE
h5fouK1BTTvv406ArtRVZ/mqt6b4VNGJUJ1WOjZUhexrqGJnqLP5jg0pAQxE
gbhBxnzPWAn+5gjyhjIWLFIKMkYIXt7CFvuNw9Aqvvko/396mwKFg/joh1Oo
uyzhTPl6wqFID+c+gjtjD/PHL954zRGjqr9RDBmuM4qONasgsB7vff5+kszZ
lc1wIUeAuCRjpK+YG8gbyhhapBRkjBC82bqk56XG1f/wt7DvGTNG3WUJZ6of
UzQyQWLdwk/bzlJogI4wtvNsmTyzUZ1RdKxZxdWhvtvZo+/9jIE7dTSIG52x
3EDeUMbQIiU/Y5TgvYAZa7xet6bZMobcZQlnqh9TrBmDS+WAuIkkx7CX6mUF
uM4oOtasAj+7njmlP9Szj6//STSIG52x3EDeUMbGZ8gY9cy9YBnrGcPYpNWH
27tGZ84YdZclnGnGjPH27/6XpZnaDHZLhXhaIHV6EXSstQop3Q6C+JNeVTSI
myFjOYG8+WTM8My9YBmrll6MwnIbnkfF5wPaSkMZo+6yhDPNmDF4o6g4yY0w
BbkjdUbRsdYqpNKPSidSEG/uq6JB3OiM5Qby0iOSOWOU4L1wGeMnkfgW5kp4
3NN9hxdZKGPUXZZwppkzthXytBemGnXuSJ1RdKy1CqV3GLtB/tIywB/ZP8sA
4tKMvaDC6/BItZm3D45IlowRglcfhSFzqPXFT6srq5OnXobWAhyCY2t7mp9n
4YwZ7rKYM82csZYS/eEqfnWWiMNE6oyiY61VKPEmkY34oKWrbectDPqpyyNB
XJwxZSorwd8cQV5yRLJkjBC86igMnUOtr56xurX8G35mvOa3naGMUXdZzJlq
jhVlDL0ch4833iFf6vATdVTCrHMggo4lVZjvYAM+V3weIBrElRmrUGa/ku0V
fZlcQV58REzvXiH0awsmeHXGhtChVqv5Fqjjus8WQyZS4s3Q5Xtmwb1Ae63q
lBF3WcyZvu737hfKjJF3oLxI9c3ZT9XHBmidUXQsriL0O0e3squN/U78pBkJ
4koHXekjq9heBf7mCPKSI2J694I2yJcmYgH2zFVH4Vn1ha4hVXeT4EWbxQ33
bEPI2tWX4S57PpwpqTOajs1QxUDj/j3VAS2bAcSNVG4gb6YjYls5D/DYycnJ
ycnJycnJycnJycnJycnJycnJycnJycnJycnJycnJycnJycnJycnJycmpoPT/
AbYLlUk=
"], {{0, 275}, {434, 0}}, {0, 255},
ColorFunction->GrayLevel],
BoxForm`ImageTag[
"Byte", ColorSpace -> "Grayscale", Interleaving -> None],
Selectable->False],
BaseStyle->"ImageGraphics",
ImageSize->Magnification[0.5],
ImageSizeRaw->{434, 275},
PlotRange->{{0, 434}, {0, 275}}]\), Language -> "German"]
Out[1]=
You can verify this is German by using LanguageIdentify.
Copy to clipboard.
In[2]:=
✖
LanguageIdentify@text
Out[2]=