Apply Formal Operators in Discrete Calculus
Formal operations can be applied with ease for discrete calculus operations such as differencing, summation, and Z transforms.
Verify that DifferenceDelta is the inverse of Sum.
In[1]:= | ![]() X |
Out[1]= | ![]() |
In[2]:= | ![]() X |
Out[2]= | ![]() |
Verify that DiscreteRatio is the inverse of Product.
In[3]:= | ![]() X |
Out[3]= | ![]() |
In[4]:= | ![]() X |
Out[4]= | ![]() |
Apply DifferenceDelta to an indefinite sum.
In[5]:= | ![]() X |
Out[5]= | ![]() |
This is significantly faster than the evaluated version.
In[6]:= | ![]() X |
Out[6]= | ![]() |
Apply standard properties of ZTransform.
In[7]:= | ![]() X |
Out[7]= | ![]() |
In[8]:= | ![]() X |
Out[8]= | ![]() |
In[9]:= | ![]() X |
Out[9]= | ![]() |