Ingeniería eléctrica
Utilice System Modeler para construir y estudiar circuitos eléctricos, electrónica de potencia y maquinaria eléctrica. Combine componentes eléctricos y mecánicos para crear modelos de sistemas completos. Realice tareas de análisis y mida el rendimiento.
Evaluating the Robustness of a Temperature State Estimator
Para ejecutar este ejemplo necesitará
Las versiones más recientes de System Modeler y Mathematica.
Por favor haga una selección:
Obtener unaprueba gratuita Continuar
con la descarga
The Model
The model contains a small electric radiator that is powered by a 24V voltage source. The radiator element heats up the body of the radiator. The temperature of the radiator will also be affected by the ambient temperature, which will increase during the simulation. Three measurements are taken continuously: radiator voltage, ambient temperature and a direct measurement of the radiator temperature. Using the Noise library, a white noise is added to each of the measurements. All noisy measurements are fed into a Kalman filter that estimates the radiator temperature.

New Library!
The new built-in Noise library gives realism by adding noise to simulations.
The Kalman filter estimator was created by linearizing the model without noise, using the function WSMLinearize. Then, the Wolfram Language’s built-in suite of signal processing functions was used.
Noise Distributions
Expectation value and standard deviation for the noise distributions can be changed in the model. The Kalman filter was created assuming the standard values for the noise distributions in the model are true. By increasing the noise or any other parameter in the model, you can see how robust the filter is to modeling errors.

Visualize in the Wolfram Language
Built-in functions in the Wolfram Language allow you to quickly create probability density plots.
When simulating the model, you can compare how well the estimated temperature corresponds to the actual temperature. The estimator is dynamic and will update as more measurement data is supplied to the filter; this causes the estimator to converge toward the true state.


Wolfram System Modeler
Probar
Comprar
System Modeler está disponible en inglés
y japonés
para Windows, macOS y Linux »
¿Preguntas? ¿Comentarios? Contacte a un experto de Wolfram »