Wolfram Language

Algebra and Number Theory

Integer Reversal

Digit-reversal permutation, and in particular bit-reversal permutation, is a reordering technique used in some fast Fourier transform algorithms.

Define a function that generates the reversal permutation of degree .

In[1]:=
Click for copyable input
reversalperm[k_, b_] := IntegerReverse[Range[0, b^k - 1], b, k] + 1;

Generate the bit-reversal permutation for lists of length .

In[2]:=
Click for copyable input
Table[reversalperm[k, 2], {k, 0, 5}]
Out[2]=

Generate the base-3 digit-reversal permutation for lists of 9 elements.

In[3]:=
Click for copyable input
reversalperm[2, 3]
Out[3]=

Represent those swaps.

In[4]:=
Click for copyable input
segment[{p1_, p2_}] := {PointSize[Large], Point[{p1, p2}], Line[{p1, p2}], Text[Last[p1], p1 - {1/2, 0}], Text[Last[p2], p2 + {1/2, 0}]};
In[5]:=
Click for copyable input
With[{k = 2, b = 3}, Graphics[ segment /@ Thread[{Thread[{0, Range[b^k]}], Thread[{b^k, reversalperm[k, b]}]}] ]]
Out[5]=

Related Examples

de es fr ja ko pt-br ru zh