Wolfram Language

Algebra and Number Theory

Use the Smith Decomposition to Analyze a Lattice

Consider the lattice generated by integer multiples of the vectors and .

In[1]:=
Click for copyable input
b1 = {3, -3}; b2 = {2, 1};
In[2]:=
Click for copyable input
ptsb = Flatten[Table[j b1 + k b2, {j, -12, 12}, {k, -12, 12}], 1];
In[3]:=
Click for copyable input
graphicsb = Graphics[{Blue, PointSize[Large], Point@ptsb}, PlotRange -> 10, Axes -> True]
Out[3]=

Let be the matrix whose rows are and .

In[4]:=
Click for copyable input
m = {b1, b2};

The Smith decomposition gives three matrices that satisfy the identity .

In[5]:=
Click for copyable input
{u, r, v} = SmithDecomposition[m];
In[6]:=
Click for copyable input
u.m.v == r
Out[6]=

The matrices and have integer entries and determinant one.

In[7]:=
Click for copyable input
{u // MatrixForm, v // MatrixForm, Det[u], Det[v]}
Out[7]=

The matrix is integer and diagonal. From its entries it can be seen that the structure of the group is or simply , as is the trivial group.

In[8]:=
Click for copyable input
r // MatrixForm
Out[8]//MatrixForm=

Multiplying the identity on the right by gives . Because is integer and determinant , generates the same lattice as but is simpler.

In[9]:=
Click for copyable input
g = r.Inverse[v]; g // MatrixForm
Out[9]//MatrixForm=

Visualize the lattice generated by the rows of .

In[10]:=
Click for copyable input
ptsg = Flatten[ Table[j First[g] + k Last[g], {j, -12, 12}, {k, -12, 12}], 1];
In[11]:=
Click for copyable input
graphicsg = Graphics[{Red, PointSize[Medium], Point@ptsg}, PlotRange -> 10, Axes -> True]
Out[11]=

Superimposing the new lattice on the original confirms that they are the same.

In[12]:=
Click for copyable input
Show[{graphicsb, graphicsg}]
Out[12]=

Related Examples

de es fr ja ko pt-br ru zh