Compute Eigenfunctions in an L-shaped Region
Specify an L-shaped region.
In[1]:=
L = Polygon[{{1, 0}, {2, 0}, {2, 2}, {0, 2}, {0, 1}, {1, 1}}];
Specify a Laplacian operator.
In[2]:=
\[ScriptCapitalL] = Laplacian[u[x, y], {x, y}];
Specify a Dirichlet boundary condition.
In[3]:=
\[ScriptCapitalB] = DirichletCondition[u[x, y] == 0., True];
Compute the eigenfunctions in the L-shaped region.
In[4]:=
{vals, funs} =
NDEigensystem[{\[ScriptCapitalL], \[ScriptCapitalB]},
u[x, y], {x, y} \[Element] L, 6];
Inspect the eigenvalues.
In[5]:=
vals
Out[5]=
Visualize the eigenfunctions.
In[6]:=
Plot3D[#, {x, y} \[Element] L, PlotPoints -> 75, Mesh -> None,
PlotStyle -> Directive[Orange, Specularity[White, 30]],
BoxRatios -> {1, 1, 0.8}] & /@ funs
Out[6]=