Study a Sturm–Liouville System with Antiperiodic Boundary Conditions
Find the five smallest relational antiperiodic eigenvalues and eigenfunctions of a Sturm–Liouville operator.
Specify a Sturm–Liouville operator.
In[1]:=
V[x_] := Cos[x] + x;
\[ScriptCapitalL] = -u''[x] - (V''[x] - V'[x]^2) u[x];
Specify a relational antiperiodic boundary condition.
In[2]:=
\[ScriptCapitalB] =
PeriodicBoundaryCondition[-2 u[x], x == 2 \[Pi],
TranslationTransform[{-2 \[Pi]}]];
Find the five smallest eigenvalues and eigenfunctions.
In[3]:=
{vals, funs} =
NDEigensystem[{\[ScriptCapitalL], \[ScriptCapitalB]},
u[x], {x, 0, 2 \[Pi]}, 5];
Inspect the eigenvalues.
In[4]:=
vals
Out[4]=
Visualize the eigenfunctions.
In[5]:=
Plot[funs, {x, 0, 2 \[Pi]}]
Out[5]=