Wolfram Language

Graphs and Networks

Find Connected Graph Components

Model the frog's jumping network from the lily leaf density. Version 11 introduces ConnectedGraphComponents and WeaklyConnectedGraphComponents functions for network connectivity analysis.

A frog in a lily pond is able to jump 1.5 feet to get from one of the 25 lily pads to another.

In[1]:=
Click for copyable input
lilyDensity = MixtureDistribution[{1, 1, 1}, {BinormalDistribution[{0, 0}, {1, 1}, 0], BinormalDistribution[{-1, 4}, {1, 1}, -1/2], BinormalDistribution[{4, 4}, {1, 1}, 1/3]}]; lilyPond = SpatialGraphDistribution[25, 1.5, lilyDensity];

Sample a random pond.

In[2]:=
Click for copyable input
g = RandomGraph[lilyPond, VertexShape -> \!\(\* GraphicsBox[ {EdgeForm[{Hue[0.3277777777777778, 0.16216216216216217`, 1.], Opacity[ 1.], AbsoluteThickness[1], CapForm["Round"]}], FaceForm[Hue[ 0.2388888888888889, 1., 0.9224857536122444]], PolygonBox[CompressedData[" 1:eJxTTMoPSmViYGCQAmIQDQYVhQ5gWiALQkeUQmiDPAj9ohxCcxRB6IwKCF1R DKF3QOVnlKDqvwGlT0DNzyiD0AE5ENoCyr+QBOVD9StEoupz8IHqy4XQDeZQ fiqEZtCG0AvioXxdVHMabKD8YKh5flDaG0I/iIbynaDuSYbqs4bQH2D2WkLo Dqg7HXwh9A+o/xdEQOgZVVD3Qc2xqIbQE9Kh/oLKf4CFNzQ8N0DDBRZ+BTkO ABBsOr4= "]]}, ImageSize->{45., Automatic}]\), VertexSize -> {"Scaled", 0.1}, EdgeStyle -> Opacity[0], Background -> Hue[0.6, 0.8, 0.4], ImageSize -> 150]
Out[2]=

Find the largest collection of lily pads the frog can jump between.

In[3]:=
Click for copyable input
VertexCount[First[ConnectedGraphComponents[g]]]
Out[3]=

Find the number of times the frog would have to swim to visit all the lily pads.

In[4]:=
Click for copyable input
Length[ConnectedGraphComponents[g]] - 1
Out[4]=

Related Examples

de es fr ja ko pt-br ru zh