Wolfram Language

Neural Networks

Avoid Overfitting Using a Hold-Out Set

Use the ValidationSet option to NetTrain to ensure that the trained net does not overfit the input data. This is commonly referred to as a test or hold-out dataset.

Create synthetic training data based on a Gaussian curve.

In[1]:=
Click for copyable input
data = Table[ x -> Exp[-x^2] + RandomVariate[NormalDistribution[0, .15]], {x, -3, 3, .2}];
In[2]:=
Click for copyable input
plot = ListPlot[List @@@ data, PlotStyle -> Red]
Out[2]=

Train a net with a large number of parameters relative to the amount of training data.

In[3]:=
Click for copyable input
net = NetChain[{150, Tanh, 150, Tanh, 1}, "Input" -> "Scalar", "Output" -> "Scalar"]; net1 = NetTrain[net, data, Method -> "ADAM"]
Out[3]=
In[4]:=
Click for copyable input
\!\(\* GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJzs3ftXVHe+N3jWzPwwP85/8Kw5z5nTndNt1qw1s86lk5w4M09fTndicjLn PEkw6zmTCDzTHcB0BGMU4gVbxKOUHUEFoyKKAiqoXASjcldBLZQCSrlDU8SN BZSUD9uRc85n9q7a19p713VvoeDNWq9Ouqq++/It4vft97b/5882fpDy3yUk JGz6H7n/+eDTr/6PL7/89Ov/+3/i/s8/pW/67X9NT076+/SM5P+a/OXffPbf cy+2cp/9Xzn/A/fvhB/84Ac/+MEPfvCDH/zgBz/4wQ9+8IMf/OAHP/jBD37w gx/84Ac/+MEPfvCDH/ysgp9//dd/pbm5OZqcnKTh4WF6/PgxAAAAQFT4LMFn Cj5b8BnD7J9/+7d/I7fbTYODg0t+rwAAALDy8BmDzxp85oj1Z2Zmhqanp1V9 LSMjI+RyuYhhGN95+M8AAAAARILPEHyW4DMFny3EnMFnDj578J+J9ocvL/a5 8P988uTJkt8vAAAArDx8xlBmDj6DRPPD99+I/S78P58+fbrk9wYAAAArF581 lNkjmrEkvl9HzEDILgAAAPAq8JlD7Ifh/z2SH34OsFgWY0YAAADwKvHZQ+xD WVxcDDu/8OuYxLm6S30PAAAAsPqIc3r58aBwf/i12HwZfk7wUl8/AAAArD58 BuGzyMTEBP37v/97WPlFnDvDr2ta6usHAACA1YfPIHwWGRoaCntvO3ENNvZ3 AQAAgKUgriPihTsHRvz8Ul87AAAArF5iHnn58iXyCwAAAMQF5BcAAACIN8gv AAAAEG+QXwAAACDeIL8AAABAvEF+AQAAgHiD/AIAAADxBvklcsxoF53M/Zo2 bdpEO/ZXUM/U8j4uAADASrPs8gszStcuXqSLkbrcTBOvpM4Yqtr0f9Evf/lL ycf7W5bxcS3EDIT4ri5TfVMbOUanlv5aAQBgRVl2+eVPN2i9og0P3yd0c2L2 FdTZCBWs/7nq3D//spKmlu1xLRTBd5X49UnqYZbBNQMAwIqw7PLLDy2U9stf RJ5ffpH8ivLLDD2o+kZ17v115tSHVcddLt/VLxJt1L/U1wwAACvCcswvydH0 v3D5pfUV5RefqQmamBilCbPnqFh1XIu+q0iz5mffdiz9dQMAQNxbdvmFM8W3 4VNT3D95DE0N1arGKX6RWEhO/nXpM/znGaH8CDVdLKdyfv5FeTldaOrlXhvn XjtOuTt30s6tW+lIfa/6nMwotdWfowM7v6ZNqam++bNbt+6ko6ev0F3nD5rr m+i+SeXl/jke/D9vDU4HvFcuvHfZNweXGbxFpw/t4Y6bSqn88XfmU93doVd2 XPk+B+ha+RFfHezcmUsHDh3l6ueB7z1H0yXh+HzdNdNoON9VQH7hvxe5HEOD 3XW07YOAfPOLLLIzxvc04bhJJw7s4a6P+65yT2rnMHP3wH+XO7nvyHfPm7ZS bu4BOn7xexoMlvmiuvcofpc4ztt1dDT3a9/1pQq/SweOVlCX4vvUYsjRdokO 5e70/f75+MqdoaYg3ykz2kOXT38r1Ie/3FauPkovNwevDwCAOLcc84tGYDu5 odh4rq5mTsYnlLRe3YZ+rOgDeNT0HX0Qos9gx7n7qnO0F/xn1fv/0jRu+N7n XDtndPzfH+94Jcfl/eCoNuzX+vzQGdqrmnsT5lyiML6X2UfV6utU9JMF3tM/ pCYFXJv6Ooa47yrofBvu2Ofu/sm8e4/wd2mG6aeTW98L+ru05+I9bT2OttCu gLlPgRJ3VGsy5Z3T20P0d33C1cfYkv8ZAwBghbjML4lB8ovysx8EH8P4ofd8 2OMex2/L7eKdo79VvffHtjHD94JdB+9c9w+WH3dm9EZkY3LhjsWF9b2MU1HS f1Id/zshY4S8J8WcpqHmg2FfvyrDxHLvEfwuzcwMaOZfG9l+qU9RP+GX+/R4 p1RuLNz6+EUa3Zp6heOqAACvyIrOL5q28QN/m3PE3+Y0H/hQ82f96cvX6PLp /Zo2T7mWOeKcwUndupXSAsdSfqmeD2LVcdsP/T+67fTWnVv1+zNiyC+jgZ+Z 6lB/H4pMYnRPvA/4e5Kuo4d26XynXx86SUdzv9S8rhzHiuneI/hdenTlG+31 HT3jG5PKT30/4BzyGNoPD0o05z9yuZm6u29T1aHfq+/rffG+pqgiYK39hh0n qeluN91uukAZAb8P/9KGPhgAWHlWQ375ReIuuukQ/wxniBE+e+/iH31zIXJz c7l/FtAtRZs921sWcAy5bY4oZ3CZqNEpznsYp4qA8YWo80u4x53uooyA+viH L0toQKwvpocKUv9TwLGjzC8bSgLWe49QVe5HhsfWyy9fH2+mCaFtZxj/nCZt X8MHdK5b7mMZajqsOY6v/ynWew/7d2mEilR9KB9Q6V31vKmrueqsfLjNf/3T vWdV42u/+KxSVe77E9/SgUOH6NChA/RtabNQv1NUFfB9n3IqfnedDXQg9wBX 5hD3z0Pc74l2DhcAQLxb+fnlA7rkDK//fGpilAadTnI4HNTddk7VB6Oc2xFJ zvh96UPVOX64U6huD60+7kTAei6ufW4cVdfH7JDxHJVIvhe+rrfminnwS93+ jfd31Ej5MfCe3t/RoHuewD6Uj/dcD/gMQxWb1O35H/i157Hee7i/S4Hn4fNL Uxs1NTX5tbVRRUCOE/ttNP0vfMZKyqBDJ8rpWtsDGtXdM0fb/8Kf88vcAiq/ fI26naNL/ucKAIDVVnp+CfpZzujdOsrdtEHThgRSHieSnHH4dsB80rEGdS6y +rhhzX0O2Dsv6vwSAj92pMgPwe5XKZzPBX7GN6821nsP93cplnXkjJ22hSj7 wfo0+vbiHSn38R5UbAxxjg/o86+LVGvYAABWkhWfX4KsVeq9sjvs9ibanKFp a4PciyXH1Rnj0W3DP7A2v/jGXZzqtjTa/KLJbjPauUyf6eaXCO893N+lKPLL e4r5VNPOBs04l573d1QrxucY+v7oF2Gc6wO60K2tLwCAeLfi84vRZ/XmRiRt o6Ony+ni5Xq6dvmPKya/qMdQsqgrcEwisP2NIb/w84m3KuzMPUSXmh6o+g7C vieDz22/0Kf5TOAY0+9L78d+7xH0v6jPk0F1d+/S7du3DXUPBs5JmSLH7Ubf fj6pSf+gn0V09pieGu2haxdLKXfr54br6T/GnoEAsAKt1vwy3Xte9ef9zz8v U8091Zu/G5f5JXD9D+d3R9Tt2feHPtW0k+bM3w0u3Pxy7+T/G/BdFKrXOc1q x2D+2DYZ+72H+3unWWOVQbeYwPqbIqfTKZH2V2YmaHBwkDNKo6MT0ueZqQly tJ3TXL8473didNBXbnRUuVczQxODDqo68Dt1fQXbLwkAIE4hvwif+4dtdFNY pzHquKnZTyxu8wvn6s51mr+TJ35dRPX1lyl/08e6f883bf10EOHml9mhWk3f QuLXZeTg2vuJwS7dNUTiPN2Y7j3s3zuGrgSsB/r554XUNSqMl03YKT9gD5zt dcO+9wL38Pvs2+uKvqp+yg9Y13SJH4ObaFHPjebvV7HG6NHVfapjKudMAwCs FKs1v+j93TyYeM4v04F74IZi6v51xsLNL3r5IJiPv1XMLYnl3iO4v+kHZ3WP 98H69TrnyJDGscaa9+mU+4RSNXsRK8vp73m3PilVsz8wL3CtGgDAShAv+cVo zY7GhPazowafbQ+yf5pefhGPE2vOMLo+q47L4/feN7q3f9i0izLWxz7/xar+ Fx9+r5aAPgw9P/9csb9LrPcewe8S78HF8OaD/0H1XPEBOhnYf2TgsKJ+xtqM 7ymwPiL5TgAA4kVc5JepDtVcW/11JPqf5f/8Nu4TYKj59B80fz//xQYb3XXe ol0fKI9TJh3n3hn1ug/lephg7/kEtPk//7JSmjNi1XElE3YqP7rH94xK37MP t+6l0sv8utwpOpOq2E9EZ56orsBzBq1rrZD3pDFOV48aPfPnE80a45jvPaLf Jb+x2+fVeUhhw9YCuunQu8dx+v7EHwyf7eQrp/ccUUcj7U1N1K+PD5Lp2/L2 iOYjAQDEk7jIL5ab8s+DnBgk5+DK2/tr6HYjXb58merr6+natSZN/4R2DY68 v/2yxHDf16CT+66478vRTd3OQcPcslT3zs+vdfL7IHZ3k8PhpFHp+ejBML5y DqFcd5jl+Lm+g04HOfgyHP53GPNdAGClQ35Z+a7u/D8DxhTyqfGuw5fZHLcv aecqfxxZP8pytprvHQBgJUN+Wfn+1F6oP8Zg4HjIcZz4sZrvHQBgJUN+WR3C m1v6CR251rvk14p7BwCAUJBfVg9mtIfqTx+hrZtSKSkpiVK5f67/YD33z110 /HKzwbMCV4bVfO8AACsR8gsAAADEG+QXAAAAiDfILwAAABBvkF8AAAAg3iC/ AAAAQLxBfgEAAIB4g/wCAAAA8Qb5BQAAAOIN8gsAAADEm2jzy9jYGAAAAMCS QH4BAACAeBNtfuE/DwAAALAUkF8AAAAg3iC/AAAAQLxBfgEAAIB4g/wCAAAA 8Qb5BQAAAOIN8gsAAADEG+QXAAAAiDfILwAAABBvkF8AAAAg3iC/AAAAQLxB fgEAAIB4g/wCAAAA8Qb5BQAAAOIN8gsAAADEG+QXAAAAiDfILwAAABBvkF8A AAAg3iC/AAAAQLxBfgEAAIB4g/wCAAAA8Qb5BQAAAOIN8gsAAADEG+QXAAAA iDfILwAAABBvkF8AAAAg3iC/AAAAQLxBfgEAAIB4g/wCAAAA8Qb5BQAAAOIN 8gsAAADEG+QXAAAAiDfILwAAABBvkF8AAAAg3iC/AAAAQLxBfgEAAIB4g/zy 6iy8eEln78zSpyV/orf/ZYT+9z8M+fxvuwcBAGAFunv3rkpXV5fPvXv3qLe3 lyYnJ+nFixdL3j7FI+SXV+OHOZbWf/cn+qsDDP1t4X+jnx19SW8U/SsAAKxg T5480TU1NUXj4+PkdDrJ4XDQ8+fPl7ydijfIL9bj+1347PLXNveS/7cEAACv jlF+URoYGPBlGPTDRAb5xXrn7sz6+l2W+r8jAAB4tcLJLzy+H8blci15exVP kF+sx8934ceMlvq/IwAAeLXCzS/8WBI/H2ap26t4gvxivb/dO0xvHF1c8v+O AADg1Qo3v/zwww+++b1L3V7FE+QX6yG/AACsTuHmF34+L78maanbq3iC/GI9 jB8BAKxOGD+yDvKL9c5i/i4AwKoUyfxdfi+YpW6v4gnyi/X+G/v/USLWTwMA rDrhrp/u6enB+ukIIb+8GoH712E+DADAyhdsvi72r4sN8surw+9jV3Z7lv7L iQl6C88PAABY8YI9P4DPLXh+QPSQXwAAACDeIL8AAABAvEF+AQAAgHiD/AIA AADxBvkFAAAA4g3yCwAAAMQb5BcAAACIN8gvAAAAEG+QXwAAACDeIL8AAABA vEF+AQAAgHiD/AIAAADxBvkFAAAA4g3yCwAAAMQb5BcAAACIN8gvAAAAEG+Q XwAAACDeIL8AAABAvEF+AQAAgHiD/AIAAADxBvkFAAAA4g3yCwAAAMQb5BcA 8/X29vos9XUAAKxUyC8A5kN+AQCwFvILgPmQXwAArIX8AmA+5BcAAGshvwCY D/kFAMBayC8A5kN+AQCwFvILgPmQXwAArIX8AiBiiXGNk8vtiflYyC8AANZC fgEQeB5QZkoKJaedI3eMx4o+v8xQV+1FqqqqCq28itqG5nSPMz92hw5/tYHW vb2O1q1bR4mJG2lPYQX1uFiD8y5Qd2MY523spYVw72W2h7vGcirnNNinoqrH ud4ySkpMpLQ99TRvVX0tTFJz+X7amPiur67WrePOt/0w3XSEcc3zYtlEf1nu n+lf2bj7HQ/r/pztNb76qWkfXvrff4A4g/wCIHj+gHbz+WXbBfLEeKyo88tc KyUkJITtL/bc0hzjUXVW0DL7G0Z0zj1DR94O55z7iAnrXp7QiXXBrzMcHXv/ 2n+Mj87r55cY62u69yy9F+Tzr6VVGt7vdPdJWhu07BmaNLq3+UE6nv6G/PnX DoZZrwAgQn4BECyH/MLliI6qc1Qq9FvoqSo/ILV7Hx7rU5Ufrtskt4kf51Gb c4pmGRc52s9S8hq5bT10J2CMzHuPkn3vfUIF5VUG5y6l8prusPpfek//s6ot /82Bu1HUxSjt/am/fGaNXuaKrb7Y8cv0unSN71NBbRe5mFlixnqo2vapVOaN PS2a8y5Ot8q55ycpdK6pl5hZf9mK3A+lsj/65ntNfY23l2hzzztHaHapf/8B 4gzyC4BgWeSX0Njek0K79wndmV2U35u7LbWpr6Vd0umveEKHxT6Rj86o3/fe pvW+dvSEwThNBNf3qEy4vtcp/asNUeeXRSlfvE5XXIvRX49ufc3Q6UShLv7y a+qZ1R5/quNbKV+UOL2q97qP/6PQb5JHozrnfFTxOykXyedcoGbbr+TM8m4e 1VZk+//9TeQXgEghv4AxL7m5v7u7Pf45Ex5miHrsXdTV1UX94880n/cyY9TT 5X/f3tNDw+OM8bFZLzEuhtxeo/kYXLvjcXN/H3aTN8g1vfS6abjf7j+nvYcG XO7Q98WVGegRyvT0c9cplOHyS/ayzy9PpHGeXxc8UL03XP1boW38mgYNynt7 i4TPfEE9C3KbvTh9w5993op1HGOUdqwR+y1u0dyjk1Hnl+HqTVJGMByHiba+ vHLWO2Q3nq/dnPv3/mtIrVf0o8zTGSEH/udzBn8WLvbRRuH4xdLx5WtJLWjx 5US294/ILwBRQn4BI8+c5yiFa8+3lbVSa9lO37+LkooUbQE7SXWFW1Xvi5K3 HaOHzAvtsR2lvvdTTxq18R46n5nk+8zpnmeaa9pa8YBGOk7rnjMjv86wDebL pOuUScu/Rp7nfcu+/2W6Y5/clzCv7DOYkeabfHqqL+gxFhbmOerX5rr8fQ0/ 3qwd74hEl9S/4M9Q3u4/Rplf5qkiSc5BZteXV+wj+sudhlnP9zmDvDfvGuTy soNc8wZlFwdpi9B3dGFMzOgzVP3VZrrokOcQz3UjvwBEC/kFjIhZQZZOeYXF VGzLozMdE/7PeR/T4ZRk6TPbbKeotqGBKov3KsplU7vrhe6xt54xzi+XssT8 MhP0mvJLzlNDQzUV5qTJ+Sq/jdiAYw427JfLJe+mkrIyKisrod3p/uvPzMnx ZZvlm1+ekE34+/uHAX0v8tgR317y7ew8OTsb6Lv8PZS7PZdy8wvpYlM3MQv6 x/Z2Fynmh8xQZ+NF+u67UiotLaWq2iZyuvTXOamO8Ugcp0mgEsdz32tz0eYX 9qEwHyeB9nc+Nb2+5rr2hTXvhB0+L4xhraUGw7VbWuPXtsnjR/PGY1/ILwDR Q34BI8qskLztFD32aP8c7i75UvjMZrraP6N6j3Xdp31CtknedlmVCczIL8kZ x6jPrb4mZ+0B6XraGcV7M3d8a6P9fS31Af0zT6mxcJPiXpdnfpnuyDHoe3kp z19JSKF2x03aqJirq7aWiju164KV8zXWr9Uv+1baCd25Hn7yuJEyq0SbX8Q8 xd/r/SDtf7T1Jc/dXUs3GePjTzVvle5/f1voHLUwO0nNpdnyfOFTD4J+HvkF IHrIL2BEzgrZ1OnW+TPe2yflk6Pt+n+2v5iol/pJro+/0Bw7+vyiPp5sko4J /Sln7HK5wdo9/nJp3xnMpXhCpzKFrJWxHPPLJO0V+xKO6bSJUv/LWlor5Iif fLyDLrZ3k9PpoGulf1CstUmgs4HzUQ//kyqrfLz9ODW1d1JT7Snasv41+b2P TuiOzUnl/3KnKuNEm1+6Dv9Sf56xWfWlnKfzjXZ9kQ/bJ4wBBe8H6j2uXmsl +vRU6HtGfgGIHvILGBGzQmDfSeD7KclHaMzwOF6qy0kSMs6Upmy0+cU4Y3ik 88nl5GMduP4nw/udav122eaXqWa5L0GvP0KcvyJK1Ws7Z3toi9gv884JVXvZ Zfsrac3QqTvadrpXsadMRs2E6j15jCWBioVxI+m6osov8rjPp0bzY2OsL548 3zmB3vnmEo0q5rJMO7V9WIb55bS/72rNmjXqDPPT9+hATfDrR34BiB7yCxgJ lRXkfBO8vXde2uH73CZFVrEuv3Dnq9xhmF/K+7XrpkTPR64s0/EjeR8U/b4E //ohaU+RzyoN+yzY4TIpayj7YKbsDVT6XSk1OKYNr+Pajr/RyT7ymmy9foxo 8ot8L6/ThaHw55xEUl9+81S95T+qMsdaLoMoc8ib24+TLelHEczDWSDX0B2u zJvSMf7QMGH4eeQXgOghv4CRsPPL3msBa5zVxDyxdRnkl5rh54bXyY+HLcf1 R1PSXNAgc0Gk+S9cOxu4N53KjJQ3Ip0XK63FUaxnltY4J3xB/bpl/O1z4Frv 8O53Z5D5NjHWl2SBumsPaef8/HQ9FdTw39+oMIb0PrXp7BFjjMtGG/88ZDZB fgGIHvILGAk7v4QYbwmaXyoeGZQzN7+cz9KuxQ70fPDCMhw/kudpBO1L8N6T 8kuw/UyU66wjXtcjzbER94FTP3MgMSmREhPV3pPGYNbSusR19PbfraeaIW+Q 8yxQXfqfB5+XYkZ96Zjn989lGGJm56XX5L34Is0vyrJctjNY94X8AhA95Bcw EioriO19SvI+6vMa/dn+hM4K+7icsM9qj23Yd/NUKmdK/4swJ2ZnlVFeekkj whzf5ZRfxqXnAYTqS5D3S0kNOmdEbt/lZwg8oeOJ/ja6Icg+t9KaY6mtDfeZ SQHzSIL1D7Hyvm9/aP/B0vrqqjpFhYWldJ8xHqOS9rNRziOef0hb+Pt+K/je MfL+wQH7JCvrFPkFIGrIL2AkdFYYk/Z+2Vs1pHuMme5Sab1Qs2IPGHH/upTk gzSke+6L0nrm2PPLS5q48a2078tDnXXgL9nHdDBlma0/kvZA0z7nSI+81jfF sO3W39de7pP5zQGjveJmhIyjbssXZhl/n4We2XkaFsZy3vzme2Lm+f6N2aD7 48l7yETe3xFZfcnZy2h/PD5/iHOKshsUWWpesTdNkDXVHWL2CbKnMfILQPSQ X8BIOFlBWpfMKahxqPpSJrrKpb1ukwra1GWf3fPt1e/bL7fgGjGs/N50f730 nln5RZzb4l9DfZjuu+R5MCzzkI5lynvwLZf5L3JfgnEeUZuU1u3wz/RpG1OO 0yxQt2INUWCbPVwhr8VJPXVLPf93YZQqtvxMer/EEWQOUYBI99/tFZ8rFLA+ yor6Uq4/yq5SP5fSO3xVGo8LXBOuHOPix8WOtQ8HHHuGOo5/Lh072H7IyC8A 0UN+ASPKrOA2/JyHGm2p8r626ZmUlZVFWYo8wO+5MuTVlnWc36He29dmo5zM dM3e/kb5xeiadPMLZ6bnouq4mTl5ZMvbJu8dXFjof/5R0PsNT8z5RbH3SDh9 L6LFqauqZxu/m7SRkpLS1fNT38qjQc18jBmqEOebCu3yV9ttlLs9TbVvzIfH ItvHJbL1R3I/UCT3HH19Tcp9SsJ6569yc2l7+seKeviE2vTG1PjzKddXv72e tufm++pLWf/8WrBguUSZX2J77hTA6oP8AkaeDwrriXfVh+iPYMlRe1T3uUL5 la1BsoC/XGCZ9KyD1D48TjeFPXGrBp5FdE3ieu0qnbXSz4ab6KAyWwl79Z68 6iT2xWPffnzJu/T3u4lErPllrlvx3J0I959dcN2mvYr1u0qbC64FaU9nfHvH vq5Tjl+Pc6p9POL7ENcs/bogdH5RrgEPfN6zdfU1Q9cKP9etq598fFD3udSS hVGqzk81mOfzPhXUdod8lpS0pmtDtPv0AaxeyC9gHi+53W7yeDy+Z0t72DDL sfwzpf1zJtzuyNqtaHm463Rz18lfb+Bzksxg3fOnwzfPjJLD4aShISf3zyFi jJ41qDFPY0MOcjiHyGm3k2PIFdMzHcM2P0jlhYVU+F01jRqs17HMwiyNOZ3k HBoiR2cnOceCPDtdt6yD7Fxd8Zyvqr4AVjnkFwDzLYf8AgCwkiG/AJgP+QUA wFrILwDmQ34BALAW8guA+ZBfAACshfwCYD7kFwAAayG/AJgP+QUAwFrILwDm Q34BALAW8guA+ZBfAACshfwCYD7kFwAAayG/AJgP+QUAwFrILwDmQ34BALAW 8guA+ZBfAACshfwCYD7kFwAAayG/AJgP+QUAwFrILwDmQ34BALAW8guA+ZBf AACshfwCYD7kFwAAayG/AJgP+QUAwFrILwDmQ34BALAW8guA+ZBfAACshfwC YD7kFwAAayG/AJgP+QUAwFrILwDmQ34BALAW8guA+ZBfAACsFV/5hSXX8ACN M54lrzdYmVgPQ+PjLvKwsR0H+QUAwFrxlF9GGvdQSkoKZzN1uheXvO6Wo2cD 9ZSXk0P5J1vJuwyuJ944zv7e9zt2omcmpuOYlV9cjpuUvz2N1q1b55OYuJEK ypvJNR9eeWd7DZWXl1NN+7DO+wvU3XiRqqqqgmvspQXDc8xzxzhH29M3yNeY tCWiawQAiEY85Rfn+a+F/JJCV8dfLHndRcPr6qMbDTfIPhxb+2iku+RLX/0k 77qG/BIFZ+UOX/2dXvL88oSqt/+aEhISDKylEvu0cfn5QTqe/ob8+dcOEqP5 3Awdedvo+Er7dMq+pEVXK21cE6wcf43oKwUAa8RTfnnpGaKWGzeopcMZt22z +Pf71JMPLDj+JJ1KT/Yd/1DzxJLfazxaHvllgeq2/JmUA97cfILuDE3R7CxD jvazlLxGzgc3Xdp+yPH2ElobmCXeOUKzgefx3qNk3/ufUEF5la+fRquUymu6 dfpfRmmHdB2v057yDhpjZmmeu8bephJaL537fd1rBACIVVzllxVAbB+3Vpg/ N2JxqonSff1T6dTMoM2I5ftZyvwy11sk5Y7Uc306n5mkw+uFfPBZJc1Lry9Q s+1XcmZ5N49qK7L9//6mXn657c8Z75xQHCM83u4/StnlwhCr/QyXjTYK1/Hh Mb17AACITXzlF5bcjIsYj1f1Outxk4txEyv8f7drmOz2LurqslNP/zC5DeZi BpZjPZPU39ND/QP91NPTTy6Pzp/LPNZLjIsht9fgfcWxpX4i1kNuD0OthZ/7 +18Kmrj7cBPDMPpzRb1uGu63c/fQxd1LDw2MM9J1Gpm48a1/fC2tVNPfr66T Ae7cxtfu55HO32X312N4c1q9NN7f4y/Hnat/YDyscl5mjHp8Zbj75b6DYe5+ Q9VtpN+3qj7GB6R76x/gynj9ry+H/NJ9+JdCn8kJbeYQLE7foPfE/DAmfpdP pPGg1IIWXyZhe/9omF+kY7ylN7YU4v5O/7PvuG9802L8meP/6PvMbw7cjaku AQD0xFV+8TygTH5uR9o58kive+h8ZhLX5mTTfdcAnc1JlebIyDZTTU/gXAGx 3GZ66PXS3bJcnXIpVFDj0FzHM0epMAZk1D6Jx+bbwWe+18RxIz3q47DUXXtI /7Np+6h5+JnBOb3UmLfB97lNirEp1nWfDmcl6R5v18lWRT3KpuxXKFv3Wrl6 DDLnwrhcOhVddeqXYyeprnCr7vUlbztGD5nAeU7Rft8C7xCdzdMrk05XB2Zo sHbPEueXeapI+l987X5GTbAxwHk6sc6fVT49Jf73OEPVX22mi4456XNz3cb5 Za7rW997P978fZD5ufqGqzf588se5BcAWBpxlV+eP6Ddvnbtgiq/XApon5Oz DlJlbQNVlxUI4yl+11VzfsVym8lm2ya1e0WVtdRQe4Z2C/NI/GM96rkqz5zn /K+fMc4v4jWJ7eC0/SoVlxTL7XvybiopK6Hi4mK6qmhrnZd2SOfNyDtGDTda qKH6pCIXbKZ2vbEh9jHtS0lWt73ePl99yffWSC0tDVQi3S+XnYruqY4zcvNb VV4qq6ykysoSVX2c7JrSnF9VjssWJdW1VFt9hnIy5XK7AurxpfcxHU6R399m O0W1DQ1UWbxXdax2l973Fun37T/fQeX5Ck9RWVkZlRTukuooJyttifOL3Idy 6E6wua8LVL3xz32f+9E33xt+Llh+8XYXKcZ3Zqiz8SJ9910plZaWUlVtEzld c4bH9UpjXGupRm/8aP6hNH706TmMNwOA+VZafikI/Hu+p48OCm1vhqqtVpdL 23WBJlXjDh5qLZH7BZTrnaLJL6LBanH+yyNtOXZIal+LNPNvJ+ms0Kez6Yy2 7HPnRSkX9Xn9+WakYb+/fc8opbGAMZXpu8elNvuh8PmXz+5JOWnbydsBfTNP qdG2STjHQRpSHm/mjq9fzFeP+fUBYxEsOWoPSH0cyuwlrpXir+Fqv7qe+H4j MY8lb7tswvetPl9Nv7p/ZmawXrqHpc0v8tzdN/bcCvK5Sdr7U2GeS5Dxn2D5 5VHF76Q5tuvX6q8heivtBI3qHnteyk/++bvNNDTmIpdrjLobi2m9OLf3tTyD 8gAAsVlJ+SUtv0233PStI0I7fo7cOuU07bHkKZ0XPqNsC2PJL9L8Xb2yUn7J ljOFAr/2uqOlg/pczzXvOYS15cm76qU5N2J+2aqTd/jxpv6uDurockp1OSKM nSRnXFDUk8KinK+Otj+VXhfHXFLSvqNJ3fp4Ko2nnbDP+l/z9kn5RHkspRcT 9VLukftSovy+Ff1Th5p/0C8nZbqlnf8ydW2b1LfRYLB255EwfmO4tkgQLL90 H/4nVVb5ePtxamrvpKbaU7Rl/Wvyex+dMMhHXIbZ8h+DrrsejKEOAQCCWUn5 RZxrEuj54AXh7/H65XJrhgzPqdcWWpZfXo5J4ykZtvM0wGhzir6nUt9M7tVR 6fWpVnFMZzNVdAyGWHMeuh55Yv/RJun65XIHrv/J+Pisl7xerzTnVqzDlOQj NGZ4TV6qy0kSMs5U2Nep930rz6efVf31fyw9ecnzy0u2Txp74dc2n7OPy+8t PKHm45+HXhstCJZfumx/JfWfnLqjzZC91VnSObRzcRaoI+A63l63npIS36XX Fa+9s7ky4rnBAADhWFn5xaDNCVGuvN+4vRbXJCv7JKzLL1w+EPpMROmZu6mw 5Dy12AelNTIa0vhNunrOBz+Wopjvwb+fk1dIlQ0tNOBya675vDQuk02FhTay 2dT416Q5QTr5JVg9BhLrUP2daInzgfTyUiTfd3jnk+dAL/X+dd5HF1Q5IGHN WlqzZo3itffpu9I9/v8fZX6ZsjdQ6Xel1OAwnpN9bcff6K6FGq7+rXRtnxXU qffaXZil7qr90rW++U3k84MBAEJBfgnRVolzYBXzSqzML7zp/mYqztumyjGi /Iq7mn4UsY8oJVln/IadpNbKIspKT9YcKznjIHVKY1HaebHB6OWJmoFw+4sU eWJv8H2CtfUVY34J83xLnV94C/zasa8+0ozLfPzVYeqZXaSpui9Dru8Jll/C Ic3TfS1P/t1S9A99dsx4H8bpjn3SOFjbLPYjAgBzIb8E7zcQ52DotYW6c3BD XFM4+UXCesg13E8tDRW0T7GOZ2eVcryLpVbb57rzVQN53C7qtzer1/dIuUzu fznKry8SxnuMsKx8r+fDGHcKJOWJjBD9L2bnl6DnCzPThsHU5zcuzNMsw/j2 CppfEF9foIqkBMvzy8u528I+M5/QHTGDSK+9T3fmg+US+fkE+zv15zgBAEQL +YVvG43/DjlxU1zDo53/Yvx3eXk+Skz5RYWlu2U7tWMgijVLJ4I9DycA6+qU 1lZX+HKHR5prEnQei4Y8R2WnYZ7zP9fZ5ZL36hPnqKQk75P6tbSeSPUozfuN 8vuWz7fb+Hx6a9CjFEt+WXDdptLCQjpVq7dvv2CuVcgQCVTiMO73Ms4vT+h4 oj+DGM0R9pXv2qctr8w0IfLL4XXILwBgDeQX/3yPTr09VRaHpPm0yrZZ3L/O t25J53zPxLXMevlFWCekl1+8401kE54drbfX7gtxXqoiSz0fuSLdw32P8h68 1FqWTzk5NmrWfdalV1Nv0nxf7r4e685x5TJUdRHZbIWqffTkcrvpoUevPZuk Y1LGEnOIPFd5b5X+/OmZ7lJp3k6zS7v+KLLve0z3u1QarN1v+L1FKqbnB3TJ 4y43dZ8DsSDPS1GO6+gdyzC/zEj73/3mgNE67Rkh4/BrkM7IzxiYfyg8NymB smtGDM/t7T0Z/BkDAAAxQH6R92prH5fbZNb9mE5J72+m+25FO6LYJyWj4Box irZ+ur9etQdt4DXNiNkn7TA9DmjrpT4CTlHLoOo91t1Hx4QxpKT8NinfiOuB 1Huk8OR8wu//8lj1vACWBm8clbLBdTEbKPofkjOOUZ9bvW9ct7SPS4pcJqBc StpBuq9c3+2dpJvFW3X7PqR11yn+fY6VfVkTXeXSXnRJBW2q64ju+5bryjeP qLZbcT6WnA1H5d+FpR4/WhykLYpnGN13Kb+7ebpm+8/SXJjshuDP6Qw2fjRc Ic/BTT11S/0MpIVRqtjyM+l9dR/PAtWly3u/7G/s1fQTuXovyM9wfCt4xgIA iEZc5hfV/iTK+RfG7Vm2TjmxHczMyZLarcysLMrKylK1ZUc7tG2E4/wOxWfS Kc9mo5zMdM0818BrejH1ver9zMxMKro+Il1To02xt316NhUWF1Ohai4v31ek 7YvYqdOH8WygXnWurLzDVFxcqJrLu+mkes7Ms8Erqj1ss/JsZMvLUb22S+fZ k89H6lWfyczJo7wcdT1q16kH3m+mr+6zFHN9+D1lhrzqMtF937yndCknSVW/ /Pcm1QeXrwptGUufXzjTwt7+oneTtlBu7nZ5Xzh+39yCYPvb+Snzi3Yd8wxV SHvQ+ft7vtpuo9ztaaq1Tx8e05lfw/bRFsW1JPx0PW3fvt0ned1fqo55ZQx9 LwBgvrjML7uUfQ1eqhPWvFYNGMwf1S0nt/18uYmWE5rswffJXO83asf4fWWP asqkZx2k9uFxulm4yfCaRjrK1RlCNZbk8Y3RZAZeC58bCi/RY2WfiGLf25ph /TkQ3vFOOpaTob239N2+PWH0xqm8rvt0TNhHP/DertqN/77P75l7LEe/3PV+ 7TMHlPWYrnO/+ZWtOvvoRft9y/V7q+yA5lwZead8/U0jjf4+oUjWgusxY/7u nPMqbXxbb1+41+lATXjHltYPbThj8IzpGWouzVav1VZkklPt48bHX5ikuvxU /bL8OqlvTlM/1h0BgEXiKr+YSmcfNNZLHjf/TGiX6vnGQXFl3MLaELfbG9E1 +NbysEZ/N2WFa2GCPKN6jBr45xNV3wx49oEW6/VI18m4gz1XR3F9Hvn8bk/4 9+b1yOcKvxxXj9z9eriyjMvgfs3EPw+cPx/HHfJZ3JEzc/3RrGuMnA4nDTnt 1Gl3ErMQ+zG15mlsyEEO5xA57XZyDLnC37NlgS/rJIdwjXbHEDHzVlwjAIAM +SX2sQKAQKaunwYAAA3kF+QXMB/yCwCAtVZzfjmfGfm+awDhQH4BALDW6s0v /J5q/PyOMOe5AEQA+QUAwFqrOb8AWAX5BQDAWsgvAOZDfgEAsBbyC4D5kF8A AKyF/AJgPuQXAABrIb8AmA/5BQDAWsgvAOZDfgEAsBbyC4D5kF8AAKyF/AJg PuQXAABrIb8AmA/5BQDAWsgvAOZDfgEAsBbyC4D5kF8AAKyF/AJgPuQXAABr Ib8AmA/5BQDAWsgvAOZDfgEAsBbyC4D5kF8AAKyF/AJgPuQXAABrIb8AmA/5 BQDAWsgvAOZDfgEAsBbyC4D5kF8AAKyF/AJgPuQXAABrIb8oseQaHqBxxrMM rsV6rMdN4+Mu8rBLfy3LA0uMa5xc7ti/f+QXAABrIb/IRhr3UEpKCmczdboX l/x6rOY4+3vf/Z7omVnya1kWPA8ok6uP5LRz5I7xWGblF5ejgfK3p1HiunW0 jpOYtJEOlF6j0fkwys/2U215OZWX11L/7Mr/fQaA1WW15Revq49uNNwg+7C2 zXae/1rILyl0dfzFkl+r1ZyVO3z3ehr5xe/5A9rN55dtF8gT47Fizy9PqCL9 Z5SQkGDgdSrunDIsP9z8Lb2u+Pwf2p4uff0CAJhoteUXsc8h9eQD7fueIWq5 cYNaOpzkXQbXajXklwDLKL902X4lZY8NeyrIMeai2VmGepvO0Xopl6ylhjFW XXZhlE5v0eae/Z3ILwCwsqy2/CK22VsrMDcB+SXAcskv3ntSRslumNC+zz6k jcL7PztwV3qdHb9K7ykyy57yOtrxNvILAKxMqya/sB5yexhqLfzc3/9S0ESM x00Mwyjmr7LkZlzc696A8l7f626P/++6rNtFPfYu6urqop4BF7Gqz7LEDPeR nXvPbrdT//B0yGvzMEO+z3f5yvTQsCuW+aMeGu63+47VxZ2/p3/YcH5uqPzi 5e6zv8cuX9c4E3CvMn4usItxS++znkmubA/1D/RTT08/uTxsyGt3u4a58/D1 wF/3APc9hC4TVd153TQg3hd3bcPjbv/rXH7JXgb5xdtbJGSQFOpf0P/McMVv /Z/56AzNCq/Nde3zv/aTL+jmEP87PE8n1oWXX5ixfmpvb6KmpnbqtDvINbsQ 0/0DAFhtteQXcdxIT+pJoZ1RzN9Utl/PnOf8fTaV98jRcEh7jLSD9NCzSC+Z +3QwM1nzftre8zSplyHYSaor3Kp7TRkFdfplgpiyX/G1v9rjbaYauzZHGeYX zxCdt23Sva7kjIN0nwmcG+Sh85lJvvM89HrpblmubtmCGofudbOu+3Q4K0m3 zK6TrfpZIsq6G+k4Tek6ZdLyr5Hned/y6H95OUNDDgc5nEHmt1Rv8uWSH2+u pwXhNW9vGaXtuSTlGf44ofILO9ZKW97Tn2Pz0Z56xbEAAJaX1ZJfpu1Xqbik WG7fk3dTSVkJFRcX09UeoW03GD8Q84ssm8qqa6myeJfcrmfupt3p/uySkXeM ahtqqTgvQ85IBbfV18QO0eF0OevsKj5LlZWVVFKoOGbGOZoM8/5Gbn6ryFP7 qIw7VmVliXRNvJNd6vZQN7+wY3RMeV2Fp7h7aaDKknz5+MkHaUiVDzx0Kcuf X2y2bVJmKqqspYbaM6pr2FoRMO/I688McplGamlpoBLpOFzdFd0zpe4GG/Yr 7oH//suorEyuo8ycHF+2Wfr8Esoo7RXGhX5doDOPSxIivyjGqfi5NN8UVlBt 7Tnam/6OlGF+9E3Lkv+3CwCgZ7XkF9FgtTj/5ZH2/TDyC/+e8u/2M/1XVNmm qGVEdUxn7R6pvfT10QivO8q+ll5vHn6mKjPTX+/rB+Lfz706Gvq+nt2Tctm2 k7cD2t6n1Cj2pQTkDr38Mn3riJTR2l3qfhbW1Smd52SXsj0U84vQl7HrQkD/ h4daS+S+EuXarhEhUyRnlNJYQJ/J9N3jUq556I2x7mbuSK+n5dcTE1hHhZtU 3/HyzC8L5HLepB3rXpPGl+4HXRcdPL88qvid/zhv5dFgwDjVVHOOlGvuzGPt NQAsP6stv0jzd8/otC0h8wvXpjPaP8tvCW1f8t5r2vkh7GPal5LsK3tfzC/S a8ZzTyZuCn0FaaUh+2BGhIyUnHFBf9+SxSE6KJzvaPtTTV0or8G/vryBmnv0 xy7E7KCuP0V+0fTNiJ7SeeEzGYr+FDG/bD2jkydfeqm/q4M6upzy9xFl3Q2K OTLtO4P6fEKnhLE/vh6XTX7x3qNk3fXTX9Adnd9FtfDyy28O6PXhzJO9qZEa m7oxhgQAyxLyi0KI/GL093LxmDv1+nSktj1b6n+RjhesnVzsFcZVFLlHl5wd Tvc8M/yc2O+0SXHf0aw/0q8/+Rpya4YMy4p9O/zYjpizplrFca/NVNExGHLd enR1J1/fget/Mjy2eC3LKr/MC2uN1qyhNWvUGebdDTbqD9o3Ejy/jNdtkvpY Chp7aT7WawUAeIWQXxRC5ReDdk3OAXr5wTi/+MZ7bIVks9kCcK9lifM7slXj TnrHPy+N3WRTYWHgsWy+16T5J2HlFy8N25upuqyECrnyOTlZlJWZSenpKbrH UeaD8n7jDLU41eSfX6LsJ/L0SX1DfumUk1dIlQ0tNOBya44RXd2Fd33PR64s 8/Gjl7QwP0ldVfvlveneyqNRw8+HmP8yd09ahy3uiZeYtIUKyuvIMcYs+X+r AADBIL8oxJxf9PoxgueX0MLvfwlHyP4X72M6prOGipeemR4yvwTtyxHn6ibv pj7FfBZ+LVFrZRFlpWvPy6936nQ913wXkdWdfH01w89DXt9yzi8i9tEFKcMc shutGQ+9/ojf766uMJveW6MzRvV3X9DNscC9BAAAlgfkF4VXnV/4+RksS16v N4hQe6DI/S9H+fVFbLBjeYkNOn+XpVbbBmk858yNbt+zDPlrEOf1iM9YiKb/ 5cVEfcj+DQ+/54y9mSqL98o5RJF3oqs7uY6CjbE9H7yw/MaPDC1QRZI/Z6Se M/rvMYz8ojDLjJG9vYYOb/9MkWM+ofuYvwsAyxDyi8Iryi9iO5mSfISGYr4n D9XlhJ7bEawupOtmH0tjOTUD+v0Uoea/bD1jvJ5XnFernP8SDL/eSVxbXSHk jujqjrs+oY52VunNUfJTzoNeyvzyqMI/LyXz4kiQzy1Q3ZY/E9ZQ3zX4TGT5 RVX3YzektdWH7qyO57EDQHxZdflFt/9A8Iryy8uXY3RYyAm5Nfrro/m2u9hm o4IzrSHntEpzYJMP0mPdtT8s3a0u8s0NUa431ly3tBeLwZgV97649sdw/RFX tlNvXczikHTP8jxnL7WW5VNOjo2adZ+X6dUZl4qu7iZuiHW0W38+kSK7LXV+ 6T39z/6+j3cOBqzzli1Ot0rPCjDOJsHyyzzV5adSYuJGqhnS6+MLf+9eAICl sNryy4yjVBh/OEyPA9uxV5ZfFOt5OUU3nKp11x7XfToozAVJym8z3LNfolhT nJxxjPrcL1Tn7649IJ3rumJPF+11i/vo8nsG1xOjyEJe10PVvBjj/OLfP699 XM5JrPsxnZLe30z33WI9yPmE3//lsep5ASwN3jgqzelVXndUdafcJ4/77u8r 5tSwjPrelnr+Czt+Xhq/eS3tBA0G7PEyN9RGG6X5Kl9Qj+H4TvD8Ir7HzwHu mVXW/QL1VmdJc3ovBD4jEgBgGVht+eXF1PeqOZ6ZmZlUdF3opxfzS8A+Ksr8 ojfuESq/nBfyi7pPw0ONtlT5WtKzyVZoo5ysNNW8j+BrjxTXOHhFtS9+Vp6N bHk5qtd2BTyzUu+6p6T96/y5gV93lJWVKR83JyNofsnMyZLrNiuLK5ulqu+j HernET4bqFe9n5V3mIqLC1VzeTedvKep02jqbqbnovq7z8nj6kje53dbYaH/ +UdG++hEINb5L4+qN6nm0n6cvoPy83NpY+JbqvVCJY65IMeZocNB+lDmesvU 67GTttD27V+p5vK+sQf77wLA8rTa8gtvpKNc3T6KbbGYX3ZdVv39+/mgsK52 V73u38sHq/eo5mioCXMvdLOIl7prj+o8jyed8ksaaSzM7CLyuu7TMWUbLkjP OkhX7drnGDsv7dCdcxtYP/6MsJuquqbombDGWD2PRM4vVQPPaKLlhOYa+D6Z 6/0Gz4kc76RjORnaMtw5+T1h9Pufoqu7Z8NNOs+o2kwnrzqJfeHvxwr8/qNh xvzd8c4LtPHtn+g+m+jdtCN03xWqX2SGTif6P19skHO8QzdohyoTCX663rcn zEIM1w8AYKXVmF9EvjUq7DLoG2e95HYzvmdhM4w75HyXkPclPFeb59Y8Sztc LHncbvJwx3K7Q83f1NlDj7snvjzDuFTPpQ6G9XrILVw3E/KcsdUdf21uD3c+ d3jXFikz1x/NusbI4bD7nmdudzgteTb0wvwsMS7uu+Ixs6YfHwDAbKs5v4BZ wtz/ZRWxfv00AMDqhvwCsUN+CYT8AgBgLeQXiJ28binY/nCrCfILAIC1kF/A DKxvzo01c0niEfILAIC1kF8AzIf8AgBgLeQXAPMhvwAAWAv5BcB8yC8AANZC fgEwH/ILAIC1kF8AzIf8AgBgLeQXAPMhvwAAWAv5BcB8yC8AANZCfgEwH/IL AIC1kF8AzIf8AgBgLeQXAPMhvwAAWAv5BcB8yC8AANZCfgEwH/ILAIC1kF8A zIf8AgBgLeQXAPMhvwAAWAv5BcB8yC8AANZCfgEwH/ILAIC1kF8AzIf8AgBg LeQXAPMhvwAAWAv5BcB8yC8AANZCfgEwH/ILAIC14jO/sOQaHqBxxrPk9Qdq rNtFAwPj5GFX9/eM/AIAYK14zC8jjXsoJSWFs5k63YtLXocgYIfoYEqy77tJ PXlvVX/PZuYXZ3sNlZeXU037cHTHmB2kuu/2UFLiu7Ru3Tpal5hEm/NP0/2x uSWvJwCAaC3X/OJ19dGNhhtkH57RvOc8/7XQrqXQ1fEXS16HIHj+gLKF7yV5 b1PMx4vn79mU/DI/SMfT36CEhAS/1w4SE+ExptqL6HWxvI7Pjt1a8roCAIjG cs0vjrO/F/4e/0D7vmeIWm7coJYOJ3mXQR2CbNzeTjdutFCf63nsx4vj7znW /DLeXkJrA/PGO0doNoJjLI5flrPL331NNfZhYmZnacxxk/Ym/lg6bnbNyJLX FwBApJZrfnFW7vDll60VmEMA8Sf6/LJAzbZfyZnl3Tyqrcj2//ubkeSXBare KOeeSc3789z7fx51vw4AwFJbdvmF9ZDbw1Br4ef+/peCJmI8bmIYRjEnlCU3 4+Je9waU9/ped3tY3//n55L22Luoq6uLegZcxKo+yxIz3Ed27j273U79w9Mh r83DDPk+3+Ur00PDrkjnlaqvjz+eeH39489iOh/L1ZGLcQv3yJJr4KGvXBdX zuVmAz7LUH+PnXvfTvaefmK8wa/by9Wj//PCdYwzAXUZcB0uJqC/RH3fL71u Gu6XjzfgchucW/97Vt/rS3K7hrnjdPnup6d/mNxhzB1mxvv89cOV6VfMN2a5 a2M01x+56PPLEzrytj93pBa00Dx/Tb1/jCK/yMc5ZNf/vVmcviH08bxPbbP6 84uYsX5qb2+ipqZ26rQ7yDW7EFO9AACYZbnlF3HcSE/qSaE98DygTH6ORdo5 8ijKPnOe8/fZVN4jR8Mh7THSDtJDD/fnNHOfDmYma95P23ueJvXaPnaS6gq3 6l5TRkGdfhkd4vVtK2ul1rKdquMkFT2I4XweOp+ZxL2fTV0Ddjqcrr23/JpH vs92Vx/QOW46VXRNaa/ZM0TnbZt0ryM54yDdZ7RzUsTv73TPjPZ7qXhAIx2n 9e8rv07bB6D7Pcv3et81QGdzUnWOt5lqegzyqOcxncpJ062DmoEZGry0RXP9 0Yg+v8xQ9Veb6aJDnls71x1NfuGOs/0zeneDjQYXDD7jvUfrDfILO9ZKW97T nzPz0Z76iMaxAACssNzyy7T9KhWXFEvzQFOSd1NJWQkVFxfTVbFNev6AdvPt 2rYLuvlFlk1l1bVUWbxLbnczd9NuoX3PyDtGtQ21VJyXIWekgtvqa2KHVHlg V/FZqqyspJJCxTEzzun0z2tpry+d8gqLqdiWR2c6JmI4n4cuZSWpjr3NdpZq a89I98rLycuS2veiylqqrSzy5QPxWpqVeYQdo2PK6yg8xdVVA1WW5MvnST5I QwFZShz308svyvvOLzlPDQ3VVKjIEkn5bep+Hd3vWXuvyVkHqbK2garLCihd 8fr1wDm/XB7al6K8p7PcNdRSiW2bVC85WWlLnF+0ossvoXnF476WR6PK96Rc w1tL3xRWcL9L52hv+jtShvnRNy2W/RkAABCO5ZZfRIPV4vyXR9r3w8gv/HvK foqZ/iuqNq+oRT1n0Vm7R8pLvj4a4XVH2dfS683D6jGemf56qf3PvToa8p7U 13eKHnu0ffbRnU/dpp9R9aU8pbo8uY8iOaOUhpTjRYo2XVnX07eOSBmw3aXO AayrU8qXJ7uequsxRH5JzjhGfQFroZ21B6T80M4o3gsjvxRcdarr0NNHB8V8 WqRew33r2OfSea4PqPOJsm5XRX5ZHKQda4SMsrmeFhTvPar4nf/1t/I0fTdT zTlSrrkzH19r2gFgZVmu+UWav3tGpw0ImV+y1e2g4Fahfywkee817fwN9rHQ jmfTfTFXSK8Zt2cTN/f7z5lWGrIPRnl9uvuZRH0+uU3fpLPvyuJUk9QvcXVY O+YzKGQ3ZV371683UHOPzrjSSzlnBX4/wfNLurZPxGdS6us5Y1fcd4j8kpbf pnttYvbi+6ncAcfSy1xSubvHV0l+WaC6LX8m5JAUuh+QQ8T88psDOmv/Xs6T vamRGpu6MYYEAEtqJeaXwNcDj7lTr09Hahezpf4X6XgZ+sfzWewV2kVF7jEg X99l3eNFfz65TS/v184Dfunt85dJ3k19Xu01PndeNK7rCL+fYPnF+L48VJeT pM0NIfLL6R6de+XvZ/CC5vdAylDJR2jM8L7kMbOVnF+6Dv+TNA5UrDO3d7xu k9THUtDY65tDbMZ9AACYaUXmF4N2Um5b9do94/zin09SSDabLQD3WpY4nyJb Ne6kJ9T1RX8+ZZuu0+4a1FfgebV17aVhezNVl5VQIXf+nJwsysrMpPR0eZzF nPyiXy50fjHIGDrlQmXHsI8dpuWaX3rFsSFO5kWD/47n7tFG1Zzd1ykxaQsV lNeRY4wx5Z4AAGK1OvOLXtsUPL+EFkH/Sxj5JbLzWZBfvI/pmM4aLV56Znr8 5pe99UHWRnv1+4GisBzzy3DdNsW+u3pjQwoLo1RXmE3vrdFZg/R3X9DNscC9 CwAAXi3kF1GQ/MLPNWFZ8nq9QbAh7yns/BLx+czOLyy12jZIc13P3Ogml9vj O6c4b0jc2z9u8oujXLoGt8E1+NZmr9D+l6mOffL65wORPTNglhkje3sNHd7+ mSLHfKKZNwMA8Cohv4i0+UWcR8HPmRgy4Z5CXV/05zM5v7CPpecw1gzoPwfA 3Pkv1ueXFyP1Uh7Tm9vtM3NHWoO0kvLLXPdJKXe8+c33qrVGkWLHbkhrqw/d ib/nggPAyrFs84vB3+99XlF+4edzHhba8dwa/fXR/FriYpuNCs60htyzNXQ7 Hu35TM4v4nxfozEx7n1pzXWc5Bd+P9qzmeK6pWs635WXGm3yOvOVkl/Y4fPS M5BeS7sUxlzcearLT6XExI1UM6TXpzhPJ9b5j7e/U38dFwDAq7Bc88uMo1QY Szms3SflleUXeW0xr+iGU7Xu2uO6L+01otl7TUc47Xh05zN7/Ejc45bfk7ie GMU+Ol7XQ9W8mPjJL+r10cm7ztLD8RliWZbc4w81e/LGS36Z6z0p5JO1dNYZ 8JyFsRv0njje89EJ/3r7hQVa0CGXk/MJv/9Lz6wywyxQb3WWNKf3wljoMVMA AKss1/zyYup7VXuSmZlJRdeFPefE9ilgLoOyndSb4xAqv5wX8ou6z8Gj+nt5 Sno22Qpt0j6t/vGe3SHXHoVzfdGfL8S8Da6+siOcvzsl7V/n37eFX3eUlZUp vZaVkxFVfjG676D5RVUujDkq4v3qnE/eK08rreAa3bqUu6zzS+AzFrr2/rU0 NvSzA3cV783IOSQMHyrm8871lqneezdpC23f/pVqLu8be7D/LgAsreWaX3gj HeWUpdjDfpPYVort2i71Wtjng1eEv1vX67bTg9X+vo0Ko/XT/NoT3Szipe7a o6q96cV2Pb+kkcbCyC7hXF/05/NSXZ5/vm3VgP7+L/x4j1F+Efd/CdwXJ7D+ /XlqN1V1TdGzEf+97KxSl3Fe8ueQKsU+NOHct145/e85xL0G+f0QzQy0U4kt j8uEWVwuzqKcvEKq6Rj0vXe3+Mtll1+8vUX+3LDhjGb8Z7rrW4O9XGboeGJ0 +cV3zqEbtCPxLe1nf7retydMLHNoAADMsJzzi8i33oZdBn3VrJfcbsb3LGyG ccf8jOJldz5dLHncbvJ43Ny1xPl8Ta4+PZ5g9+CR5sgsp/yylBbmZ4lxucjF Y2aX/HoAAETxkF8AYsfSTaHfJrXotu5nprvEZ2MHWaMUppWSXwAAlivkF1gt plq/lcbBthWep67+YWLcbnINP6Takr3Se6kFoedih4L8AgBgLeQXWD1Y6q7M NZy/y8soqNPMkY0G8gsAgLWQX2C18TKPqaW2gooLC6nE92wn7p+Vjb711Gad A/kFAMBayC8A5kN+AQCwFvILgPmQXwAArIX8AmA+5BcAAGshvwCYD/kFAMBa yC8A5kN+AQCwFvILgPmQXwAArIX8AmA+5BcAAGshvwCYD/kFAMBayC8A5kN+ AQCwFvILgPmQXwAArIX8AmA+5BcAAGshvwCYD/kFAMBayC8A5kN+AQCwFvIL gPmQXwAArIX8AmA+5BcAAGshvwCYD/kFAMBayC8A5kN+AQCwFvILgPmQXwAA rIX8AmA+5BcAAGshvwCYD/kFAMBayC9WYsntcpGL8SyDa4ke63HT+LiLPCzq JVzILwAA1kJ+sZDnAWWmpFBy2jlyL/W1xMBx9veUwt3HiZ4Z1EuYTMsv86NU XZhJievW0TrB5vwKGpxdjOm4450X6Kukj6Vjrvt4C51rH7a8rMvRQPnb06T7 SUzaSAdKr9HovPazc0N3qKq8iqqqwlDbQbO+cjPUVXsxvDLcsduG5pb8dwUA ooP8YqHnD2g3305vu0CeV3JOD/V3XKcbLd2m5gJn5Q5ffjltVn555fXy6pmR X9jhq/ReQgIl6HqfLjq9URx3nq7t/XuDYybQm9/U07wlZZ9QRfrPDMsmJLxO xZ1TqjIde/9DkM8HWkttfKaba42gTAL9xZ5bS/67AgDRQX6x0Ktup5/d8/Vr pKRspvue2P5+roT8ErlY88vidKsiu3xCFzuHaXZ+nsbsVyhZkWFuuiL7njts v5La7o/2XKIhZpbmZ0epLv9T6fU39rSYXrZLUXbDngpyjLlodpah3qZztF6R QRrGWKnMnLONSkvLqbzcQFUV2daLZVPo/jxfFzPUUXWOSo3KcKrKD0jX8uGx viX/XQGA6CC/WOhVt9PePt/5UlKy6aEX+WUpxZpfrm35M6ldvhM4VuS9RxvF Nj+1nhbCPObi1GV6XWq372qv+fTvpHb9giJHxFqWv14xo2Q3TGivjX0o3c/P DmiPbWyeTif+yFfu1wUPwi7H9p6UcqGmbgEgbiC/WEhspzPkdpoZHyB7Vxd1 2e3UPzBO3pDH8ZJruN9fpstOPf3DxHhYzec8bjcxI99TutD/cn14mtwMQ4zb aI6sl8b7e7hj+o/LX4vR/Fw5vzzz/X+v20X93PX7r2eAXDrXE1a9BMkvXmaM enzX1kX2nh4aHmdCH9frpuF+u7+MvYcGuDJsiDJu1zD32S7pXvTqNhox5RdF e7+/7al+/XQXSX0w4bbB3cf/0V/mrYPE6H5mhk6sSxDywF3Tynp7i6Qs1r+g f23DFb/1f+ajM8I8ltDmuvbJOWQ+3BzyhI68nRBx5gGA5Qf5xUJiO72rnhjm IR3OTPblAJXkfdQ8/Fy3/EhHuTAepJVf1Su3zc/uCblFT7pmLGnKfoWyDT5b dNWpuQ4xv1T1jFBryU7d8xRdHYq8XvTyCztJdYVbdc+RvO0YPWRe6ByTpe7a Q/r3n8bX7zNNGdZ1nw5nJemW2XWyNeZ+oVjyy3RHjtAuf02Dhp8bpR1rgvRp aEySTWi3P784Yvi5qWvb/Od+LY9GTSnLm6Ehh4MczinDssPVm3xlf7w53P6k J9I1fRhBDpnuiCbzAMByhPxiIaGd5ttEMV+k5RymsrJKKivJV+WG6wEZZqrl iPx++m4qqaylhtpKsmXJGejA1VH/57k2v7GkhIpt2+Q2uPAUlZQUU3FJIzGK fpWRm98qzptNJdW1VFt9hnIU2WpXhbo9EPOL8nrKuHIN1SdVOehol35fgVG9 aPKL9zEdTpGvY5vtFNU2NFBl8V7VNbe71BnGeUm+voy8Y9RwoyXg2jZTO6No q6RxNv97RZWN1NLSQCWK+kstuhfTdx9LfhHnivx48/dBP9eR+6vwx1zmbgvz adbSlcDxHYXF6Ru0VujXaRP7dWIpG5ZR2hthn0h0OSS6zAMAyxPyi4UU+cXX R3FjUPU+yzykg+n+9pofY5LXDD2hY0I7vunkvYAxEJbulgl9IGml6r78xcf+ 8yXvpj69saCZO1J/Tlp+fcA4AEuO2gNSnlK298r8suvMrYAxryd0KSdJ6B+5 HF6/hUF+6S75UsoUV/vVc234/pJ9Qp2ozsMO0UHh9aLmwH6ISTqb6b+2TWce Sa+PNOwX6ryUxgLqafrucekaYplDFEt+6T78T7429jchckn34V+G9Tkf721h TCrEeJNXzCqKz8VSNqgFcjlv0o51r8lzcMMqNxll30sO+l4AVhDkFwsp8svW M/p/zi5OfS/1zVwdF/sVvL510A0NHTSpl0O442YLfRGqsSHpfNm6648Ga/cI uec7mtS95qd0XmjvT9hnpdfF/MLnDb112fI9ZNPDcNY96eUXb5+UT4626/fj vJiol/urxLqS8ov+nGWvq486WjqozyX3b4n5Zasi08i4uu/qoI4uZ0xjSGbk l9Rzwf87E/sg3ghnDbCUQb6gnoVg35HYR/E+3WQC80sUZTXXcU+xfkrpC7pj VCbwvpvlHHI/7BwyKfXxfHgMfS8AKwHyi4WkPJFOzYZ/NnupMS/VPx50YzS8 43rk/PLQIL9oc4SHLgnzPQ5c/5PxsVkveb1eVZ+PmF9yawyuT7nuKcr88sx5 TpgPdITGDMt6qU7o6znaLs6lGJPGnDJs52mA0Z9LpDTV+q3Ux1LRMRjGHOrI mZFf9ncGH4+T5sVuOBNk3xXxOxIyyJtHDObfiuR5uCWO57GXDTQvrDVas4bW rFFnmHc32Kg/ZB7hcshPI88hU1FlHgBYzpBfLCTmibRSg/4OP3H+xtYz6vaO ZYaopaGKSooLKS8vh7KysigzPV01FySa/FLer53PGoyYXwzLBT2v8ef18kuo NdViXW1S1NWg0J8iSs/cTYUl56nFPkhur85xPH3SmJPYn5OTV0iVDS004HKb 8t2/ivGjRxW/C3/OiGIMKOjcFGkts2KMJZayISzMT1JX1X5pbXbCW4Fzf9Wm mrdGkUNGo8o8ALC8Ib9YSGqng88LEfOBMr+M3DhquJ4oPcb8UjMQuo9C7/oM 938xM7/svRa0P0SvrnjT/c1UnLdNt87yK+5qj8lOUmtlEWWla9eEJWccpE5X ZHUUyIz8ErgO2ehzYc1/mQtzbopeVomlbJjYRxekDHPIbrTmX15zFVHfi7gu Cn0vACsK8ouFxHadHxMJ8uxDsU0W+xT4+STSehrbWbIPu8jDj+mwrHTcaMaP zgv5RdzHJVyvNL9khOh/McgvEtbj2y+npaGC9inWVO2sMl7f7fHtZ9OsXufE z4Feovm7vcf/2d/evnMiyF4o/N5tEazZUcw7Mc4H/JiUzt5usZQN2wJVJCUE nfczHlUOiS7zAMDyh/xiIcX83avDevuW8J5KuUJcfyytj9lbr98XEVV+keeO 7KzQm7fqx3oYcrkY1V52ryK/PB+8IOSGfUFywxNpPZFyfrExea1WuHv9sq5O 6TuriDDnKcWSX9jh89J++sbzYG9LzxcoCes5SAtUvfHPQ873Fft0Ej6rVMyp iaUsP87l39slM8jeMfw56oQ9h/X7naLLIeN1m9D3ArBCIb9YSMoZKZRmMC4y 010qzSVtFvZmk+Z4nNRv/6R1RIF5wWOwLkkgzVtN3m2QMyalddt664+szC/K ebh7DfpK5LpKp2ZhDxjveBPZcnIo/2Sr7l67L4RclJwhPuvaS61l+ZSTY6Pm cb1M6ZXG2WJ5XkJszw+Q56gaPk8oX8gKf7kz6HwRJXndzvvUoPfcpDn5mUsZ AXvixVK297TYn2S0d6/6eU9685blHJISfg5ZHKQt0jMP8JwjgJUG+cVCAfu/ bCtS7yU3Zb8ozWVJ3tsktb/PnHI7XdWj3LPUS44G5byYwLwgr38uCNhrxod9 LK1RTkk7SPeVczy8k3SzeKvu2MmryS/KXMZdf41DlfcmusqlukoqaJNel/pt OEUtAfvruPvomDCGlJTfJtSvnE/4/V8eq54XwNKgNO8ona67jPrMQov1+Udy e51AqafU/RG91fJ7n2rGWmaoQugreS3tknpdkqI916xXnu2R+jf49zT7/MdQ lh0/L13va2knaDBgbGluqI02Ksr3BOaTKHNIVJkHAOIG8ouFhP6X5MzdlCft m5tOeTYb5WSlKeZaHKQ+ZbvPjtEpxbzS9MwsyvStPRL3v80W9qEL7GdhqdW2 QT5ueiZlbjtFQ4rM9HykXvWsgcycPMrLyVLNX82tUfd/hMwvIfp9DOslI3A/ GQ812lJV18+vucpSPnch7Tsa8gYrk02FxcVUqJrLm02diucOPBuoV91vVt5h Ki4uVM3l5fcNjOW7jzW/8PNb6nb8rdTu/yRxI23fvp02Jr6lyAKXtOum51qF PXD940+B82jZ4SuK91+n9K+20/av0lWvnTUYj4ql7CNF5uJ9nL6D8vNzVffD ly9xzGnKDldHkUPYPvS9AKxwyC8WEvZFSd7Fjx09pcaSvap209cnU3iJxvTW +HqH6LxNu55mF/f5SZZrs3M26M8V0ZTTZgp+L9tjOWmaY6dnHaTr/dpn1Ijj WYbrp9nH/vXIQeeu6NSL7rosfh/go7rPc8qvbNXdP4/PMHeri3SfFcXX12O3 th/FO97J1UGGdr1S+m7fnjChnvsYSuz5hbdAHd9l6Oz1lkCfFbQY7PnyhI4L 83r5fWH05v+yY6205W2dPeR+8gU1DAWfSxNL2fHOC7Tx7Z/o3s+7aUfovkvv 2QTynjKfngo/h8xJz7fU6c8BgBUB+eUV47KH2+0hj5shdxjPOma94ufd5NHL OYbnEfahC7Luyevx+J9RzfDXEs4c0FfJy903d8/cNTIB84mNsf7ncAv3FE4Z X/0Knzd+VnfkzMkvfguzo2Tv7CTnkJP7p53GGDOekb1AY047ddqd5HTYye4c C/O5ibGWfUmzrjFy8OXsHIeTXLMLy+D3DQDiDfILgPnMzC8AAKCF/AJgPuQX AABrIb8AmA/5BQDAWsgvAOZDfgEAsBbyC4D5kF8AAKyF/AJgPuQXAABrIb8A mA/5BQDAWsgvAOZDfgEAsBbyC4D5kF8AAKyF/AJgPuQXAABrIb8AmA/5BQDA WsgvAOZDfgEAsBbyC4D5kF8AAKyF/AJgPuQXAABrIb8AmA/5BQDAWsgvAOZD fgEAsBbyC4D5kF8AAKyF/AJgPuQXAABrIb8AmA/5BQDAWsgvAOZDfgEAsBby C4D5kF8AAKyF/AJgPuQXAABrIb8AmA/5BQDAWsgvAOZDfgEAsBbyC8SOJcY1 Ti63J+zPu10ucjHhfj7+IL8AAFgL+QVi5nlAmSkplJx2jtxWfD4OmZZf5kep ujCTEteto3WCzfkVNDi7GNNxxzsv0FdJH0vHXPfxFjrXPmx5WZejgfK3p0n3 k5i0kQ6UXqPRee1n54buUFV5FVVVhaG2g2Z95Waoq/ZieGW4Y7cNzS357woA RAf5BWL2/AHt5vPItgvkseLzcciM/MIOX6X3EhIoQdf7dNHpjeK483Rt798b HDOB3vymnuYtKfuEKtJ/Zlg2IeF1Ku6cUpXp2Psfgnw+0Fpq4zPdXGsEZRLo L/bcWvLfFQCIDvILxAz5RSPW/LI43arILp/Qxc5hmp2fpzH7FUpWZJibrsj6 YTpsv5La7o/2XKIhZpbmZ0epLv9T6fU39rSYXrZLUXbDngpyjLlodpah3qZz tF6RQRrGWKnMnLONSkvLqbzcQFUV2daLZVPo/jxfFzPUUXWOSo3KcKrKD0jX 8uGxviX/XQGA6CC/QMyQXzRizS/XtvyZ1C7fCRwr8t6jjWKbn1pPC2Eec3Hq Mr0utdt3tdd8+ndSu35BkSNiLctfr5hRshsmtNfGPpTu52cHtMc2Nk+nE3/k K/frggdhl2N7T0q5UFO3ABA3kF+s4CU34yK35/9v72yAq6rvvM84HWd2pjPt jNs+nWfa6dOutbrW7W6f3ba2T7fdqVWnb2trd9t126cvCs9uVWwraitYETCC RiBKRCC8KVGJLwEjBDFgeFNATDQBAoSEJBIMEAwkNAFFf8/93XPPPf978783 574k557k85n5TGtyzr0nJ7/875f/23Ha8ZNHD0pD3U7ZuXOn7G0/Nej4vqNt 0rDT+X5dQ4O0tB9N/doDfXK086h09w2kPGbgZLd0Hu2WvjTX9G5ft7TsrXPe s65BDnR2D/1zRc450BA7p2Fv5Dpj50TyyF15zi8Z3RPj+hJ+psg5A0Oc093Z EjlW36dOGvYekKMnU9/XTMwpvxif98VbjtvvT/2CeB+M38/g+sU/cc75xlw5 aj3mhCz54bhYHngtb+f27V4Qz2J7++3X1rLyv51jfrYiNo9laHt23u/lkF6/ OaRL5n9zXMaZBxELT/JL/j3V9KRMiHw+Ty7fLJvL74n+f9cbFhht5sBhWVN6 Z8L3XcdPXiRvHj0z+LUbH4t+/6alqT4bT8rTt90QPebxhlODrunOlW9I67bH re85afaaFJ9N70bPmWg55+bZ6+Xk6T3563/J4p7oeqb6Fx62njPh5vultmVw ZhzofF0emXKD9ZxpSzfn3C+US345tm167HP5T9Kc8rhDMvWyNH0agzwsc2Kf 2zc+25ryuCPrJzvvfcksOZSXc9UTcrCxURqbjqQ8t6Xy1ui5F9/utz+pK35N P80ghxzblk3mQcRClPySf92s4DlRZpUulIVzZsmKbbHPmr798siE8fFjJs9Z Li+sWycVC2ca590lWzvPWF/7zhWp88uqKW5+OZH2mmYve1rWrauU0uk3e/lq 9pZBfRbN64q988bPkGXl5VJevkxmTHSu/7bp06PZJuf8kuU9aVo11ctgsxbJ ug2bZF3l0mifkPP122XrUeOzqs/JW+73FlS8KJs2rZNlcybHX+emBbtyqoFc 8os7V+Ti219Ke9y2+672P+bS82psPs235Pnk8R3D945tkG/F+nW2uP06uZzr y0MyM8M+kexySHaZBxELU/JL/jWzwvjJy2X/ycHta/2yP8Q/P6v3nkj4nvYN 3B/7HB8/eXXCZ3w+8sv4SYtkT3fiNTW98KD9s/7E9uhaZ6evZW1S/8xxebH0 VuNnzS2/ZHVPBg7K3NjXF9Qm90MclidifVG3rtgX/3prLI+Nn/SYtA0kXtux 1xbHr+HNvuz/fZ5Lfql/5N+in7HfGyKX1D9yla/jova9GhuTGmK8qc/NKsZx uZyb1n7pbNooU394iTcH19d5h7Pse5lO3wviKJL8kn+9rHCX7Oi2tJORf/+7 n8WPbrXPbzjTsTbeT1LTfmbQa2efXxJfz/OwLIr1p6yo885rfqEoNg5TJoet 79cly2+L5YpJOeSXbO9JPL/cZc0bfZ17ZNumbbKn83T8a25+udPINJ59snfn Ntm2symnMaR85Jebnkz/d+b2QXzdzxrgeAb5nTT0p/vsdvsorpGNR5PzSxbn DrqOXcb6KdPfyfZU5yT/3LVeDnnddw45HO/j+eki+l4QR4Pkl/zrZoXkvpPk 708YP1/aUr5On6yZfkPs8/zIoHOzzS+pM8bJ+Pt553mv9WDNWyl/3iObH8o5 v2R/T9riY06T5jwtB46eHvL93evVPpaV25qT5jnnx3zkl+Id9hznGp8Xe/2K NPuuxHQzyP+Zn3KOk6M3D3dZ4+ncz022N7bW6LLL5LLLEjPMD66fI3uHzCOR HPKFzHPIkawyDyIWsuSX/DtUVvDyTfrPe3dex61GVhm+/BJ5v4qpKfPLU3sH z4F1Pd36fM7jR7nck4T5OREn3jZDSpc9LZvqmqW7z/I6J/fEx5zc/pzps0ql Yt0mf+uwfDgS40f7Vv7W/5wRYwwo7dyU+FpmY4wll3OHsL/3sOx8rji+Nnvc N5Ln/iZ6pPbOLHLIoawyDyIWtuSX/Os7v8xcn/bf/m6euLMA8ktVS5p+jb7c 1x/lck/UY3trZeGsyQk5xnX2ytcGv+bAYdlcsUCmTBw/6Pjxk+bKjs6h+3HS mY/8krwOOdVxvua/9Picm2LLKrmc69OBfc/EM8zDdamei+Wtucqo78VdF0Xf C+KokvySf33nlyHGW9Lml5W2uRtqfvPL01MGr8VO9nTzM3kbP8rmniQ4cFI6 W/bKpnUr5f7bvGxyz3MHU77mye5O2VtXm7jOafwM2RPQ/N3di3/pfN5+f0ma vVB077YM1uwY805S5wMdk7Ls7ZbLub7tl5U3jEs776c9qxySXeZBxMKX/JJ/ h/osdj/vJ4y/P81nZFd87cySuncGv3bKforj8fPy0v8Sm29yz3Op8tK70hqb 45tLfsnlnqR2QF6L7b/jt29ooHNHfG31yjSZbShzyS8DLU/H99NPPQ/21fjz BZb5eg5Sv1TecuGQ833dPp1xv6kw5tTkcq6Oczl7u9yWZu8YfY81sT2H7f1O 2eWQ9jW30veCOEolv+TfobOCN+d0Zop+gRP1j8XnZtQa+524+9dNGD9XDlrf +9l4H0Lu+eVd6djwULw/4k3LOvB3B/bH55LktP4oy3vS1/6yzJk+XWYv3Wzd a/dMvG/IfdZ1n2wuny3Tp8+RWus6rD5r/1Wm5vb8AG+OasrnCc2OZYW/vSft fBFTb93ONbLO9tykHu+ZS5OS9sTL5dzdj7v9San27k183pNt3rKXQyb4zyHv Ncsf48884DlHiKNN8kv+9ZMV4uuSI86rakzoS+nY+VR8r9sb5m1JPPfUrvi+ bJPmrZejxv4lx/auNfZsy09+Sdjr7eZH5HVjXsjA0TdlkTFGk+v+L9nck3i/ TcQFm5oT3mege0/8+rx9+bx8ovu/7E94XsCANG941Fuj3WnLN/7M9flH3uf1 OLlpeWJ/xO5K73u/HjTWckJWxvpKLrl5VeK6JOPzfNB65Xca4v0b+r1B+/zn cO5A+9Px673k5iXSnDS21HNwi9xinN+QnE+yzCFZZR5EDI3kl/xrZoXulMed lBfn3OTNt5h4m0yZMkWmGHlA91w5aFk/0/i0t99sdG/fOXNk+m0TB81DTZVf Ul2TNb9EPNHwbMLr3jZ9lswx5spOLi11nn+U9uc1dJ+XNOj4bO5J8jl3SenC hVKaMJf3LtlhPHfg1IG1CT/PlFmPyMKFpQlzeW9dGtz+u469smbq5fHP/Uuv u0XuvvtuueW6bxhZYNXgddM9m2N74DrjT8nzaAdanje+/3cy8Y675e47JiZ8 7YkU41G5nLvPyFzqf0ycKrNn35fw8+j5yxp7Bp3bUplFDhnYQ98L4iiX/JJ/ TzfH1hNPWztEf8SANL7wqPW5QrMrNqfJAs55yedMnDJXtra0y8bYnrjPHTiV 0TW5a5Ofs6yVPtXyssy9LXmtzu2ytLpJBs7sj+49N36afb+bQcbXK9mOz+ae nJTXKhfE9wk2nVa6SvZ3D+5H6WvfIYumTxp0/ISJM6J7wgz13MehzD2/qP2y rWySZa+3cfKbeZtS7PnSJYtj83p1Xxjb/N+Bts3yx29a9pC79Hey7mD6uTS5 nNu+4xm55ZuXWn+eH9w8X17vtD2bwNtT5tfL/eeQnvjzLS39OYg4KiS/FIJ9 0t3dLSdPnow+W/rkgM/zBvSZ0kflaMTubj9zOHP3ZOQ6uyPXqdeb62d8/u/J QPT6jsbuiZ9zBvpOxu/h0e7Ua2syNT/5xbH/nUNSt2OHNB1sivxvnbQdzccz svulralOdtQ1SVNjndQ1tfl8bmKu574r73S2SaOeVxexsUk63+kfxjpCxNEq +QUx/+YzvyAi4mDJL4j5l/yCiDi8kl8Q8y/5BRFxeCW/IOZf8gsi4vBKfkHM v+QXRMThlfyCmH/JL4iIwyv5BTH/kl8QEYdX8gti/iW/ICIOr+QXxPxLfkFE HF7JL4j5l/yCiDi8kl8Q8y/5BRFxeCW/IOZf8gsi4vBKfkHMv+QXRMThlfyC mH/JL4iIwyv5BTH/kl8QEYdX8gti/iW/ICIOr+QXxPxLfkFEHF7JL4iIiBg2 yS+IiIgYNskviIiIGDbJL4iIiBg2yS+IiIgYNskviIiIGDbJL4iIiBg2yS+I iIgYNgs1v0ydOhURERFDqgv5BREREcPiWM8vAMlQF2CDugAT6iE4yC/kF7BD XYAN6gJMqIfgIL+QX0aac2f7pae7W7q7uqWn/2zaY8/29khXV1fEbkl3pN/j 5Fx/5H27osf29J9L+97UReHSG6kf/R129/Tn5Tjf9SPURTCck96eHunu7pHe VG2G37/tDNoAP/VDPQRBpB66u8gv5JcR41xPk5TPLx40dlm8vFo6BzVJZ6Wx anHSsfNlV1fygX6PE+lpflmKk967fGtryuulLoKht7lGivT3M79GBn1q9HdI ZUni77BoeY10J38M+T0ug/pxoS5Gkl6pry5P+rstlqakwvD7t+27DfBdP9TD SNPdvFXmFzH/hfwysvQfrIrd7yIpK6+UqoplzudU9LNqU8K/eztq5sfbqorq Gqksc3NPiTT3Z37cua7t8d/1/PIqqalaHv/vivpu6/VSFwHQXR//fLm7eF3k 08ukR6qKY98rWS7VNVVeO1a21agfv8f5rx8T6mKk6JWa+VONv9sKqawoi+bL ZuOX6Pdv238b4L9+FOphBOmpj39mLK/yfp8u5BcYLs52bJVlldulx/g3zLnu XbHPqxLj31RdUj717mjO2RrvmDkn25cXOXW7vSvD40Saqkqcdqv6YPxrPY2V zu+/xPLvfKFdGnHOdshy89/GJdUJv5eznbXO14sqJf5pc7ZVymL5o7E3s+My qR8T6mJk6N5VHu8Pq0/TH+b3b9vvcf7rx4F6GDk6a8uc32HNoeh/k1/IL8Fy VmpKEv+9e7Zzq7VP5pz79di/gfwep/+Oqy62tT09UlHktI+2f2tTFyNJj1TH +utXVFfJI5b84vaVJPeXNcc+l9yv+z3Of/0kQl2MBL2xPpAi2dWT/jh/f9v+ 2wC/9eNCPYwc3u/AKQryC/klWNx/A3v5pf9gdfR3UlKdNC4d+TfQI8a4gt/j pL9ZSqL/XSWJTeE5qS8vsv6bSqEuRopzsqvCGbcpqWqO/HeHNb+0VjufK1VJ YdOtg+Louf6P810/SVAXw088W5ZUSUdXq+zavl22RqxvapVecw6K37/tDNoA v/XjQj2MHL1N3hyEqu3N5Jfk/NLbme9bDmloqnLaiqLyXeI2S/2t1cZnmUGs DXI/1/weJ2ebrZ+HitdWDf6kol0aGTpqnXkIRctj/R1nvd+f91vpl9r5Tj9d ctZMrAO/x2VQP0lQF8OPmxXslnjzq/3+bftuA/zXjwv1MLI0x+esMX83/vM3 PiUy97Mi08+P3IT0ay0hP7ifW1PvLpNW45an/lxp8plfmjLOL7Udg0cKaJeG n94m53dYVFbr/W7eb439vmqM8Ru3/3/wvFq3DuZH+1H8HpdB/SRBXQw/7u+m qKRCdjV3Sk9vr/R2t0ttRUni3BS/f9u+2wD/9eNCPYwg/R1SUeL0v1RUV5Nf 3J9/3+pIIY5zPLBmuO4+RDknTdVl8bl5TUnj2/HPFWOeXZSkNsjvcen+Pd1c XUJ+CRB3PHtqcZmULy+TsrLlUhZfY18k8+fPl8rtTp9oY2WxJM7zdjjbWpOQ Q/we57t+kqAuhh/vd5O8trlHKouM+f5+/7YzaAP81o8L9TByOGN9U6Wykfkv CfnlbJ/ItPOd/LLmpmG596D0ytby2OdTUXlCv4uL23YVVzYkfaMpNoYdm//i 8zhvjs1y6UzYv6F/0NxhE9ql4adza7kUFZdISUmxFBerJVJs7O1QVFQky1/u iB7bGvucSZ6X0LXdWadSluFx/usnEepi+HH3WhjUNxb5jbj5xfn1+v3b9t8G +K0fF+phpOiNzfGfL62xf26SX4yff/kVTn4puTDfNx4inOttlYrYvgol5Vut nw1RYvMno+NKRrdIR2ztXPzfZH6P0/mhsdxe1WS8q7t2u6hSbEscaJcC4v3W eH4we8XcuXs6V8r4anzd0taucxkd579+EqEuRgC3v0T7Z82GoqfR+Xrkd9YR /TX6/dv23wb4rp8Y1MNI0R8b25sq1bFsSX4xfv5tD3hjSN0H8n73xzrNVQ/E 73dJeYWUL18uy13LyuLjBM6x3rhC7fZdUhvfa6pY6nsk4+POdtTGxyQqarbK rq3VsfZR9/mwz9mmXQqI+FqR5P6PLqmI10+1bN+1XSrLnM+kxD18/B7nv35M qIuRwZ2Xor+Lytrtkb/ZKu9vdov3N+v3b9t/G+C/fhTqYeTorq/wfoe19eQX 8+c/utvLL9tLhuP2j2laY/PGi5L2fo5nmoS+4n7ZVflI0jHzZXtHcuvh97hI 7Te95O33G7O8Nrl/2oN2KSDcvcJs+woafXjxMaayaulK3tfd73EZ1I8LdTFS nJXG6uVJv5uiyL9zOgYd6fdv23cb4Lt+qIeRprO+etAzIFzGdH5RZn/KyS8r vpvv2w5ZcLa32+fzG/0dp89u6+L5jSHnnPR0O7/Dru6Uo5AZHJdB/Qh1MeK4 z3uNmPZP1u/ftu82wF/9UA9BcFZ6unh+46D88vwEJ7/M+CuR9wbyfdMhRNAu gQ3qAkyoh+AgvyTll6ZKbwypuTrftxtCBO0S2KAuwIR6CA7yS1J+OdMrMu1D Tn5ZOzHftxtCBO0S2KAuwIR6CA7yy9TB9bf0W05+eehz+bzVEDJol8AGdQEm 1ENwkF8s+WXrLG8M6cRB+wXCqId2CWxQF2BCPQQH+cWSX7oavPyyY14+bzeE CNolsEFdgAn1EBzkF0t+UR78pJNfyr+Xr1sNIYN2CWxQF2BCPQQH+SVFfll9 vbeO+py/a4bRBe0S2KAuwIR6CA7yS4r8Ur/EG0N6pyVftxtCBO0S2KAuwIR6 CA7yS4r80vKSl18O1ebrdkOIoF0CG9QFmFAPwUF+SZFfju/z8ssbK/J1uyFE 0C6BDeoCTKiH4CC/pMgvZ/u8/LJlZr5uN4QI2iWwQV2ACfUQHOSXFPlFue+j Tn5Zc2M+bjWEDNolsEFdgAn1EBzklzT5pfQLTn558l/zcashZNAugQ3qAkyo h+Agv6TJLyu+6+SXhV/Kx62GkEG7BDaoCzChHoKD/JImvzw/wckv9388H7ca QgbtEtigLsCEeggO8kua/FJ7T2wO73ki587m43ZDiKBdAhvUBZhQD8FBfkmT XxL2sGvNx+2GEEG7BDaoCzChHoKD/JImvxxc7+WXts35uN0QImiXwAZ1ASbU Q3CQX9Lkl2N7vfzyZnk+bjeECNolsEFdgAn1EBzklzT55Uyvl1+2zsrH7YYQ QbsENqgLMKEegoP8kia/KO4edmtvzvVWQ8igXQIb1AWYUA/BQX4ZIr+UXhrb w+6aXG81hAzaJbBBXYAJ9RAc5Jch8svjVzv5ZcE/5nqrIWTQLoEN6gJMqIfg IL8MkV9W3+Dklwc+keuthpBBuwQ2qAswoR6Cg/wyRH55eaqxh52/a4fRAe0S 2KAuwIR6CA7yyxD5pX6xtwap51COdxvCBO0S2KAuwIR6CA7yyxD55eCLXn5p 35Lr7YYQQbsENqgLMKEegoP8MkR+ObbHyy8NT+R6uyFE0C6BDeoCTKiH4CC/ DJFfzpwy9rC7P9fbDSGCdglsUBdgQj0EB/lliPyiFH0ktofdxFxuNYQM2iWw QV2ACfUQHOQXH/llXmwPu6d+nMuthpBBuwQ2qAswoR6Cg/ziI788dmVsD7t/ yuVWQ8igXQIb1AWYUA/BQX7xkV9WX+/kl2L2sBtL0C6BDeoCTKiH4CC/+Mgv L9/NHnZjENolsEFdgAn1EBzkFx/5pW6RsYddWy63G0IE7RLYoC7AhHoIDvKL j/zSvM7Yw25rLrcbQgTtEtigLsCEeggO8ouP/HJ0t5dfGp/K5XZDiKBdAhvU BZhQD8FBfvGRXwZOevll2wO53G4IEbRLYIO6ABPqITjILz7yi1L0YSe/VN+S 7a2GkEG7BDaoCzChHoKD/OIzv8y7xMkvK6/N9lZDyKBdAhvUBZhQD8FBfvGZ Xx77TmwPu69ke6shZNAugQ3qAkyoh+Agv/jML6t+zR52YwzaJbBBXYAJ9RAc 5Bef+WXTDG8O75nebG83hAjaJbBBXYAJ9RAc5Bef+WXvs15+Obwj29sNIYJ2 CWxQF2BCPQQH+cVnfjne5OWX+qVZ3m0IE7RLYIO6ABPqITjILz7zy/vviUz7 kJNf1t+e7e2GEEG7BDaoCzChHoKD/OIzvyillzr5pfz72dxqCBm0S2CDugAT 6iE4yC8Z5JeVP3Hyy9zPZnOrIWTQLoEN6gJMqIfgIL9kkF82/jk2B+a8yI3q z+Z2Q4igXQIb1AWYUA/BQX7JIL/osxvdObxv12dzuyFE0C6BDeoCTKiH4CC/ ZJBfut708sub5dncbggRtEtgg7oAE+ohOMgvGeSX986I3BNbg7Rhcja3G0IE 7RLYoC7AhHoIDvJLBvlFeehzTn556seZ3moIGbRLYIO6ABPqITjILxnmlyf/ 1ckvD1+c6a2GkEG7BDaoCzChHoKD/JJhfnnpj05+0XGkc/5+FggntEtgg7oA E+ohOMgvGeaX+se8ObzH9mR6uyFE0C6BDeoCTKiH4CC/ZJhfOnd5+WXP05ne bggRtEtgg7oAE+ohOMgvGeaXs6ed/es0v9Tek+nthhBBuwQ2qAswoR6Cg/yS YX5R5nzayS9P/yyz8yBU0C6BDeoCTKiH4CC/ZJFfVnzXyS+lX8zsPAgVtEtg g7oAE+ohOMgvWeSXdbc6+WX6+SLvn8vsXAgNtEtgg7oAE+ohOMgvWeSXujJv Du+J5szOhdBAuwQ2qAswoR6Cg/ySRX7peMXLL/tWZ3YuhAbaJbBBXYAJ9RAc 5Jcs8stAj5dfttyX2bkQGmiXwAZ1ASbUQ3CQX7LIL0rxJ5z88twvMj8XQgHt EtigLsCEeggO8kuW+WX5FbE1SJdlfi6EAtolsEFdgAn1EBzklyzzy8t3e2NI JzsyPx8KHtolsEFdgAn1EBzklyzzy5HXvfyyszTz86HgoV0CG9QFmFAPwUF+ yTK/KA9+0skvj1+d3flQ0NAugQ3qAkyoh+Agv+SQX6r+y9vH7mxfdq8BBQvt EtigLsCEeggO8ksO+eXAWuNZ1M9k9xpQsNAugQ3qAkyoh+Agv+SQX947I3Lv h538UvnL7F4DChbaJbBBXYAJ9RAc5Jcc8ovy1I+d/DLrYyIfvJ/960DBQbsE NqgLMKEegoP8kmN+qV/qjSG1b8n+daDgoF0CG9QFmFAPwUF+yTG/nD4WuYnn Ofll/e3Zvw4UHLRLYIO6ABPqITjILznmF2Xx15z88vDFub0OFBS0S2CDugAT 6iE4yC95yC9bZnpjSCeac3stKBhol8AGdQEm1ENwkF/ykF+O7fHyyysP5vZa UDDQLoEN6gJMqIfgIL/kIb8oJRc6+WXOpyM38S+5vx4EDu0S2KAuwIR6CA7y S57yy64FXh8M83hHBbRLYIO6ABPqITjIL3nKLx98IFL2VSe/TPuQyNHdub8m BArtEtigLsCEeggO8kue8ovy9hsi93zIyTBLvuFkGggttEtgg7oAE+ohOMgv ecwvyrpbvXGk+sX5e10YcWiXwAZ1ASbUQ3CQX/KcX/Q51A9+MvZMgQtEejvz 99owotAugQ3qAkyoh+Agv+Q5vyh7n/X6YGb8lci635NjQgjtEtigLsCEeggO 8ssw5Bfl6Z95GUadfr5I5a9EXp0jsm+1yNFGkTOn8v++kDdol8AGdQEm1ENw kF+GKb8oh2pFll+RmGOS1bVKxZ8QKb1MZOm3RFZeK/L8BJGX/iiy7QGR+iVO 3tFnQx5vcp639P654bleSIB2CWxQF2BCPQQH+WUY84vLW6+KlH9f5N4Pp88y vj1PZOZHRR76nMjiy0We+KHIqt84meeV2SJvrBA5uF6kq8HJO6yDygraJbBB XYAJ9RAc5JcRyC8mmife2i7S8ITzrAHNHKtvEHnyGmfN9bxLRR74uNMvk5es M85Z0138P0UW/KOTdar+S2TTDJH6pSItNSLH97FnsAXaJbBBXYAJ9RAc5JcR zi+ZcKZXpOeQyJHXnf6UhidFdjws8nLketfc5Myx0fGpR//OySe5Zp5ZHxNZ +CWRp37srAPf/lDkF1Hl7MU3BvNNwdYFBAp1ASbUQ3CQXwo4v2TDQI9I936R ts0iuyucDFJzpzO+9PjVIqVfdHJKNvnmgU+ILP6ayLM/F9n4Z5H65c68nN4j o3KMalTVBeQN6gJMqIfgIL+Msvzil/cGRE4cFDn0ssgbj4tsvteZN/z4VSLz LnHWfWeSbfR4HfvSeT5rb3bmHjc+JdKxTeTUW5F8837QP3HGjMm6gCGhLsCE eggO8ssYzS9+6HvbmXusc3V0voz24egaqdmfcuYQZ5JvdP34Qxc5fUBV/88Z A3vtUZGmVSKHX4v14RRWxqEuwAZ1ASbUQ3CQX8gvWXHurDPv98BaZ06O7tH3 5L8668CLslxnpfOMNRst+CeRFd8Vee4XzjycrbOcsaqDL4p0vSnS0ybS/07k GvzVUrZQF2CDugAT6iE4yC/kl2Fh4KSzR5/mG+1nWX+bs7fNo/8gcv9fZ95/ k65fR+cul35BZOk3nfeovkVkW7HI7pUibZtEjtSJnGh2+pP+clzk1GGRd1qd /XS03ycF1AXYoC7AhHoIDvIL+SUQ3n/PyRGdu5z9+XaWOvOMn/u/zhiTrvWe 8+k87pmTRn2PR/9epOLfnHVduqZ90wxZN/Uqkdp7Ymu9firy2JXOGJr2B+m4 l67LOtkRyUQnnPVZtjnM2k+k+UmfKaHq3Ops9h98tz/nWw75gfYCTKiH4CC/ kF8KHn0mpvaf6FonzQC6J/H2EmdOzvrbnf1zdM33kn925h6PROZJ5bTznfEz 7WNKNY6mfUaal3Sus/YX6XouzUUv/LdI9e+cnyma5X4hUvZVb72Y/q/OP1pz o8iOec56+gNrIvdlqzOu1n3AyVO6x5CuvdeMGL+Hp525TNoXpvv/6Lic3su+ ruB+ryGF9gJMqIfgIL+QX0Yluo5cx69aNzj9O7onsX52az9P3SJnPo1+/uv6 cl0vpX0+JReKzLzAySDxvOHudXyR0ycUHfsKKBtlO6comufSjNfpPs7l33Ny lN4LXRuv4296v/S+6f1r3ej0lWlG0iyp2WfDZGeekmYxzVT6Ne1vGuXQXoAJ 9RAc5BfyC1g4967cN/WOxD4MF/2M1j2UdX14XZkzf1nHlHRNVc2fnLnML/w2 kgUmOjlgzzPOZ7+eU7/Y+b6ORT36JZHSS53cpPOW7/+4yH0fddaia+548JNO f4uua9dxLO2jWfCV3PuXtF8on/s7J3ieMxdJ+5VeusO5Py0vOVky+iyLDNeY vdNScHsL0V6ACfUQHOQX8gvYKdi60M9znYus848P73D2Zta+jzfLnXykfUz6 bAodX9M+khf/4PSp6DG654+er/NpdG6z7vuj41i67/Lczzj5ye/cas1YuueP Pvdi+vn+zzGfZaFjZnoN2s+jey7qmjb9/5W/dI7Tc3TOt84DLxAKti4gEKiH 4CC/kF/AzpitC803OudI12bpeJHOP9Znqe973skWmpE6Xkl8poTuh6hjde6Y ko635buPR3OSZpyAGbN1AVaoh+Agv5BfwA51kSO6zkrHf7SfR59loeNsmm/i z7K4TGTWBSnGuD7i7CekY23RPqGk8a+yL0de59fO+FxztTNv2c/15GHPIOoC TKiH4CC/kF/ADnUxQmg/jo6F6f6E2rej66nMeUc630jXZA31TAvNPPp8Ll1f pXOPtY9I+2t0fEqfi6G5R8fIdD/pHObUUBdgQj0EB/mF/AJ2qIsCQ8ezdN24 zo3WvQpzWQum8310vCsLqAswoR6Cg/xCfgE71EUI0DVN+gxSzTXa77Lk6/Z9 d3SNuO6no89QN7+u/TX6rFGd5+MT6gJMqIfgIL+QX8AOdRFSdGxI593oeqs9 Tyfu0af7+Ok6d9sadN37UJ89oefpcyZSQF2ACfUQHOQX8gvYoS5GMZppdH8a 7ZdJtY+Nrg3XZ0c0VTr7Icaw1oXmorfrR/AHgEKBdiI4yC/kF7BDXYwRju0V 2TLTWZ89LcU+NrpvjT4XfcMUWTz11978Yp0jrM+vKIrtcaz7OcOYgnYiOMgv 5BewQ12MQXQfG51Po/sdL/uX1Pvy6Zpu3TfZ9j1d853pPsMQWmgngoP8Qn4B O9QFRPcp1ucf6FiTPu/Btjex7tOne9UUG3OD9XmiPDN8TEA7ERzkF/IL2KEu YBCnj8qzU3/kPOtSn0Wl++dFvhblZLvzPCs3w+hzLV+ZLdLVEOw1w7BCOxEc 5BfyC9ihLsBG2roYOCmy9NuD+2ge+LjI0z8VeXWu88yqXPYB1rGp7v3Znw95 hXYiOMgv5BewQ12AjSHrQrPJi5NE5nw69f55Oq9m8eXO+qb6Zc7zufX5Bul4 p9V5Dmf0dc9z5uhA4NBOBAf5hfwCdqgLsJFRXZxodp5lsPLawXvn2TKNzrGJ PtfpAZGts0Rq7oxknBtFln7LPvfm6Z85c44hMGgngoP8Qn4BO9QF2MipLnoO Oc9fWjvR2ft3qGc62dR13ObaJ32WZd/befv50tKxTeSZ/xQ5c2pk3i8E0E4E B/mF/AJ2qAuwkde60DEjHTvSMSRdd61zZ2Z9LHHfmZkXOPvsrbs1cuxu5zx9 pmW0TyZ2nD4Lqvx7Tl+N9t3o8751bxp9Lrf5LMxc0L1tdK1VdG7y34n0dubn ddOhY2YFDu1EcJBfyC9gh7oAGyNSF5pP9Lnc6dB5Ns9P8NFnc56ztnvBP4o8 8UPnOVG100TqFkUa2iqRzl0ipw6nnlOsews/c93g1539KWfvv+FAnwFR8ycn v+n4WwFDOxEc5BfyC9ihLsBGwdWFfr4/eY3TJ6L76mX7TG7NObMucJ6boHv3 6XqptTcnrgnXzKJrx93/nhl5v/Yt+f15NC/p/jnmtb1cYPfcoODqYQxBfiG/ gB3qAmwUfF3os5q63hQ5sEZk1wKRjXeJrPqNyONXR7LIF52Mkk2+eew73nMt Nxclfk+fhzn3M86eOCu+62QcXVul76174Oj42L7VIm2bnfEyHXuy7e936q1I DvsH+/trv9Fw7Wus43I6BqfXmCEFXw+jGPIL+QXsUBdgY1TUxbmzzn57uhdN 0yqnD0fXY7/w307fhz4L6qGLYv0554lsmDw4O9Qv9+bDZKuuudKxLe3j0fe8 /+Pe9x6/KnJ9r4nM+Yz3Ne1n0jGvI3Uip48540y50rzO+zl0vKots/6kUVEP IYX8Qn4BO9QF2BhzdZFu/q+uR9pynzP3WPtcNHPoPBtdH6Xzjm1rvv2o41bu fji9R5yxMdtxmje03+Thi5z1XOXfF6n8lbP/jj6Ts36pk090D2S378hF85jO A7onKYPpszhbN/i+PWOuHgoI8gv5BexQF2CDusgA7R/R8SxdR3TkdZGWGmdt lI5rab5Yf7vz/G7dH0fn3GhOsc3Xje5r/M3c+npUXa+u/Uo6FqZjXebXo3OU Y3lLn0Ou1+kD6iE4yC/kF7BDXYAN6iIgtL9E10npmNfeZ5313DqupfNiKv5d ZPkVzjOndI5xJvvqzLvEmZOj7F7pZBd3PrPmHJ07rM/wPNNrvSzqITjIL+QX sENdgA3qIiTo+vN3WkTatzp9KfrsqRf/ILLyJ07fiz6TSseadL2TifYR6RiS bX3Wwxc742SvPCjStim693FW9aD9Uvnal2cMQ34hv4Ad6gJsUBdjgLfrnXEt 7ZtJN4dn+vlyaOqnRV6+21lb5Wd9lPbj6Bzp7SXD/VOMesgv5BewQ12ADepi jKF7Ce5/wVkLrnscF6d5jpX26eh4lvbh2PpXju+LZaJxzrzjs30j//OMIsgv 5BewQ12ADeoComuidA7O2pula+r/sPfR6PM6tV9Gj1V0nXrRRxKP4RniOUF+ Ib+AHeoCbFAXYBKtB12bXb/E2bsvPv83pu4to8+1imec87x9bnSeTfK6bvAN +YX8AnaoC7BBXYDJoHrQtd6674w+Jzy5T0b7X3SP34Prva/p3jmQFeQX8gvY oS7ABnUBJmnr4a3tznol7ZPReS86/8Ul2ifjzAGO7oUMGUN+Ib+AHeoCbFAX YOKrHvq6Bu8fo/vYuH0wq349PBc3yiG/kF/ADnUBNqgLMMmpHtznbOszDI7t yd9FjRHIL+QXsENdgA3qAkxyqodje73nLz36JcaRMoT8Qn4BO9QF2KAuwCTn elh9vTeOpM+8PLAmPxc2BiC/kF/ADnUBNqgLMMm5Hs6dFVlzU+JzCmr+5D1/ G1JCfiG/gB3qAmxQF2CSt3rQZ0eaz13SvWSSn80ECZBfyC9gh7oAG9QFmOS1 HroPiJR+0csw+pxJ9rdLCfmF/AJ2qAuwQV2ASd7rQftctO/FzTAPXSTScyi/ 7zFKIL+QX8AOdQE2qAswGZZ60Gc/Vv7SyzD6zMijjfl/n5BDfiG/gB3qAmxQ F2AyrPXw0h2Jz7bu3j987xVCyC/kF7BDXYAN6gJMhr0ethV7GWb2p0R62ob3 /UIE+YX8AnaoC7BBXYDJiNTDphlehim5UKT3yPC/Zwggv5BfwA51ATaoCzAZ sXpYf7uXYUovFfnLiZF53wKG/EJ+ATvUBdigLsBkROvhhd96GWbJN0TeOzNy 712AkF/IL2CHugAb1AWYjGg9fPCByDP/6WWYZ65zvjZGIb+QX8AOdQE2qAsw GfF60OcNLPlnL8NsmDyy719AkF/IL2CHugAb1AWYBFIP/e84+9q5GaZ+ychf QwFAfiG/gB3qAmxQF2ASWD2cOCgy62NOfpn2IZHWjcFcR4CQX8gvYIe6ABvU BZgEWg8d20Smn+9kmJkfdZ6fNIYgv5BfwA51ATaoCzAJvB4ankh8VpKOLbno 3N79VSJ1i4K7vmGE/EJ+ATvUBdigLsCkIOph45+9DLP02yIDJ0Vee1Tk4dgc mfs+KnK2L+irzDvkF/IL2KEuwAZ1ASYFUQ/az1Lx716GmXa+9/9dX50b9FXm HfIL+QXsUBdgg7oAk4Kph3f7RRZ8JTGzzP2MyIOf9P7/++eCvsq8Qn4hv4Ad 6gJsUBdgUlD10Pe284zHxV8T2fOMk1d0HMnNM/q1UQT5hfwCdqgLsEFdgEnB 1UPyPJd3/yIy6wInv2iuGUWQX8gvYIe6ABvUBZiEoh50j163D+at7UFfTd4g v5BfwA51ATaoCzAJRT30HvHm9Fb8W9BXkzfIL+QXsENdgA3qAkxCUw+Vv3Ty yz0fEulpC/pq8gL5hfwCdqgLsEFdgElo6uHtN7wxpOpbgr6avEB+Ib+AHeoC bFAXYBKqelh+RSzDnCeyaUbQV5Mz5BfyC9ihLsAGdQEmoaoHnbure/G6/TDP /lzkvTNBX1XWkF/IL2CHugAb1AWYhK4eju0VmftZL8PommrdNyaEkF/IL2CH ugAb1AWYhLIe/nJCZMk3vAxT9GGR2mkiZ08HfWWp0X1tWmoSvkR+Ib+AHeoC bFAXYBLaejh3VqTyV4nPG3jg4yI7S/M3pnSoVqSvK/fX0ec7PfVjZ+zrndb4 l8kv5BewQ12ADeoCTEJfDwfXizz6pcQcM/MCZ43S0cbsX3d3hbPnTOkXnP6e XKi9x7u2si+LvP9e9MvkF/IL2KEuwAZ1ASajoh60f6PhicR5Ma76TEhdq3R4 R+S49/29nvbh6Bon9zUe/QeRgZ7srq1pVeJrqS/dEf0W+YX8AnaoC7BBXYDJ qKqHc5HP590rRR77zuDMEO2X+agzjqN5Zn+VyMmOwa9h9pWYr6H9Jmd6M7ue Y3ucuTnROTofESm91Hvdg+vJL+QXSAF1ATaoCzAZtfXQc0hk410i8y4dnGNM NV9orljxXZHHr/a+fv9fO302Ff/ufW3JPw9+vmQq+t8RKbnQyyv7nhfp3i9y byzPPPAJ8gv5BVJAXYAN6gJMxkQ9nDosUr9U5JnrROZ8Jn2eUed82skaivbp PPHDxO/P+CuR4k+IPHyxM7a0+HKRpd929td79O+d7+lzDtzjzb326pfFv05+ Ib+AHeoCbFAXYDIm62HgpEjbZpEdD4usnSjy5DXOHOBZFzjzdXs7E4/X9UyP XzV07rG58ifO/BwT3XeP/EJ+gZRQF2CDugAT6sEn7/ZH8s48py/lxUkiz09w xpae+IEz30b3o9F+mPLvi6y+XqTmTpHtJfY9aXQeTcmF5BfyC6SAugAb1AWY UA8BcXwf+YX8AimgLsAGdQEm1ENwkF/IL2CHugAb1AWYUA/BQX4hv4Ad6gJs UBdgQj0EB/mF/AJ2qAuwQV2ACfUQHOQX8gvYoS7ABnUBJtRDcJBfpiIiImJI Jb8gIiJi2Byr+QUAAADCD/kFAAAAwgb5BQAAAMIG+QUAAADCxljLL4iIiIip JL8gIiJi2CS/ICIiYtgkvyAiImLYJL8gIiJi2CS/ICIiYtgkvyAiImLYJL8g IiJi2CS/ICIiYtgkvyAiImLYJL8gIiJi2CS/ICIiYtgkvyAiImLYJL8gIiJi 2CS/ICIiYtgkvyAiImLYJL8gIiJi2CS/ICIiYtgkvyAihsfjx4/LmjVrpKys TObPn49YcGptao1qrQ7n3wL5BRExHB47dozcgqFRa1Vrdrj+HsgviIjhUP9N q58LL730kvT39/tqswFGGq1NrVGtVa3Z4fp7IL8gIoZDt++F7AKFjtao1uqi RYuG7e+B/IKIGA7dfvmenh45evSodHV1IRacWptao269DtffA/kFETEcup8H b7/9NmLBS35BRESV/IJhkvyCiIgq+QXDJPkFERFV8guGSfILIiKq5BcMk+QX RERUyS8YJskviIiokl8wTJJfEBFRdT8Pjhw5gljwkl8QEVElv2CYJL8gIqJK fsEwSX5BRESV/IJhkvyCiIgq+cWx6ZUqmTPlJrn26qvlavXaa+WG22bIihdf k44CuD50JL8gIqJKfmmQR8Z/WcaNG5far94hNc1vDzq3tb5Gli1aJlWv7CuA n2NsSH5BRETV/Tzo7Owcg7bLE+M/E88pX71hujy3YZs0NDTIzm3VUjr5Oi/D XHS77GhPPP/F6V+Kfu9v7lxTAD/L2JD8goiI6ljOLx2vzI/nkxuXvGo9pvWV xfK37jEr3kj43saZP4h+/Yr71gf+s4wVyS+IiKiO5fzS/OK9sfGhGXIgzXFP TBiX2M/SfkD2HmiQJ27+X9GvX3jTcmk4sDfab3Og3f4aLQ07Zd1zz8lzEavW rZNtOxtSvl975LXqGvZKe/y/X5cNkXM2bNog69ZtkLoD7YHfu6AkvyAiojqm 88tGf/klmifq6mRvi5Mb3HEjm39zZ1JfTPvrUnrzFfbjr7xdqhs6kt7vgMz6 mn7/61Ld0iKV0/7Deu6ND4/NPh/yCyIiqmM5v7RufMDLAwte9n1eY9WjMmny JLk6nid+IpOnTZZJkybJgnWN3rEttTLRyBxXjp8i8xYulJmTjHk1466WlXVm hjkgc65y8sv48d+JHfN1uXVmqSycd49ce4n3elfcN/bm3ZBfEBFRdT8PDh8+ PAZ9Q6Z8zejXuHy8PLxynex4c7+v8zfNcee/bLR+/4Up/zuePx6t2ZvwvbbX V8sv3Pf9zlzZH//evlh+cfz8j+6XXW3m6+6T8infjn9//o72AriPIyf5BRER 1bGdXyK2bJEpV1nGdi75ulw/eZasrN4mLSnO3eDO35364uDvt66P55M/PNVo Pb995yOx9/tbWRLPIWZ+mSBb2mzvvVtmxY75yq2rgr+HIyj5BRER1TGfX6K2 yY6ap2Tm5Ovla5dYssy4n8iS2gODzkuXXw5siM2tGTdRtqd83xYp/bGbcepj X/Pyy3UPb055zQ0Vv4vN3ZkuewK/fyMn+QUREVXyy2D3v7lDqp9bIrf9+HMJ Oeah2taE43zll+/cb4wNDXZDbAzqy/HX8PJLUc3gzOTaWfeYs677K/eTX/Io +QURMRy6nwdvvfUWWnxzbYl83c0w15TKQeN7Nfe5+WXdoPP218xwzrluUcI5 yQ5+jX0yO5Zf7l67J/W1tbwo18b6htYfPBz4fRopyS+IiKiSX4b29RX/5WSR r8yS3cbXfeWXyDn70rx2uvxy70sHUp7XtiM2d+Y76V9/tEl+QUREdezml30y Lzb35N41qXOCuue5W6xZJF1+aam9Pzbu9Is0/SP1Mi22/umPq/fGr8vNL1dM fSHlNe1Y+qv4/Jfdaa59tEl+QUREdezml0Oy9IbYs49+NCdtH0bVPT+097/M /JeU+eWtt16Vm2PjTv9RvMn6unuq/hxff/TYrrbY1738onvDPPOGJfsc3hR/ 7WuKNhTAvRw5yS+IiKiO3fyi/Sq3x+fmXnTdLFn/RkviMQfrZcU9P4sf85vF 2xLPr47lj89PlI37BueM2nk/jZ/724fWJcyD2fHcvfHnKo27sdw4z8wv+tq/ kCe3749//9DujTI5/v2vy+rdY2fui0p+QURE1f086OjoGJNWz/x+whqji6/8 udx4661y439ek7iG+rp50pR07qFdCxOOufzyy+X3ZduMY5pkwfWfNfaU+Zpc eeWVcqW5Z95Ft8nm5o6Ec2ZfGXse9o+u9F5bz7vyyoT3+/2TOwK/fyMt+QUR EdWxnl/U7asfkZ9f/nn7M4ouvkqKHntJWlOcu/XJe+UqY8+Yf7p7XdIxrVL9 0O+9vhbD39z3uDQOek0vvzywcZ9sf+yOwdf0+V9I2frdgd+3ICS/ICKiSn7x bGp8TbZsXC/r1ztuea0xZW5Jtrm5WZpbW9Mc0yyNjY3S1NQk9a/VS1NrquO8 /PLnNfudr7U2R66tUerrX5PX6v1f02iU/IKIiCr5pdA08svasdnHkk7yCyIi quSXQpP8kk7yCyIiqu7nQXt7OxaEe+S+y2P55YV9BXA9hSX5BRERVfJL4dmy t0Hq6hqkpQCupdAkvyAiokp+wTBJfkFERJX8gmGS/IKIiCr5BcMk+QUREVXy C4ZJ8gsiIqru50FbWxtiwUt+QURElfyCYZL8goiIKvkFwyT5BRERVfILhkny CyIiquQXDJPkF0REVMkvGCbJL4iIqJJfMEySXxARUS0rK4t+HmgbfOjQIcSC VWtUa3XRokXD9vdAfkFEDIdr1qyJfiasWrWKDIMFq9am1qjWqtbscP09kF8Q EcPh8ePH430wiIWu1qrW7HD9PZBfEBHD47Fjx6L/pl24cGHgn0+INrU2tUa1 Vofzb4H8goiIiGGT/IKIiIhhk/yCiIiIYZP8goiIiGGT/IKIiIhhk/yCiIiI YZP8goiIiGGT/IKIiIhhk/yCiIiIYZP8goiIiGGT/IKIiIhhk/yCiIiIYZP8 goiIiGEz2/xy5syZwK8dERERx56aQTLNLy0tLdHjT58+Hfj1IyIi4thTM4hm kYMHD0b/2w+HDx+OntPd3R349SMiIuLYUzOIZpGOjg557733fOWXnp6e6Dnt 7e2BXz8iIiKOPTWDuH0p586d85Vf9Ljm5uboeadOnQr8Z0BERMSxo2YPzSCa RQYGBuSDDz7wlV8Ut99G58LouUH/LIiIiDj61czhzsM9duyY77Ejl/fff1/a 2tqi5+v/kmEQERFxONWs4WaPQ4cORdcgZdL34qKvpfN+3X4YxpIQERFxONSM 4fa7aPbo7++P9qVki76mm4XcOb06tqTrmtgfBhEREbNRM4RmCc0U7lxdt99F s4vfObvp0Pxz/Pjx+JxeRERExHyqGUPnu2iuyaXfxYbOodGcpGux3XElRERE xGzULKGZQrOFzn3RnJHNfBe/6Gtrv46+T9D9T4iIiBheNUtophjO3AIAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFDo/H878F5X "], {{0, 706}, {560, 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag[ "Byte", ColorSpace -> "RGB", Interleaving -> True, Magnification -> 0.5], Selectable->False], DefaultBaseStyle->"ImageGraphics", ImageSize->Magnification[0.5], ImageSizeRaw->{560, 706}, PlotRange->{{0, 560}, {0, 706}}]\)

The resulting net overfits the data, learning the noise in addition to the underlying function.

In[5]:=
Click for copyable input
Show[Plot[net1[x], {x, -3, 3}], plot]
Out[5]=

Subdivide the data into a training set and a hold-out validation set.

In[6]:=
Click for copyable input
data = RandomSample[data]; {train, test} = TakeDrop[data, 24];

Use the ValidationSet option to have NetTrain select the net that achieved the lowest validation loss during training.

In[7]:=
Click for copyable input
net2 = NetTrain[net, train, ValidationSet -> test]
Out[7]=
In[8]:=
Click for copyable input
\!\(\* GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJzs3ftfVHeeP3geu/vD/rj/ws6jd2bSPeaH3X18Z6bTmbi7375MT7fJZGcm EfPY+SYBvjsdwHQE4wXiBSPiKGUrqGBURFFABS+AaFTuKqiFUkApUNyaIh4s oKT8clydmfeeU3Xul7pyKApe9Xg8207V+ZxboZ8Xn9v5nz9b/2Haf5eUlLTh f+T+58NPv/4/vvrq083/9//E/cc/Zm74l/+amZryt5lZqf819au/+uy/596c 4bb9Xzn/A/f/CS+88MILL7zwwgsvvPDCCy+88MILL7zwwgsvvPDCCy+88MIL L7zwwgsvvPCif/u3f6PZ2VmamJggl8tFT58+BQAAAIgKnyX4TMFnCz5jWPX6 93//d/J4PDQ4OBj3awYAAIDlh88YfNbgM8dCvaanp2lqakrV9jI8PExut5sY hvEfj98GAAAAIBJ8huCzBJ8p+Gwh5gw+c/DZg98m1he/H7ENhv/z2bNncb9u AAAAWH74jKHMHHwGieXFt+uI7TD8n8+fP4/7NQIAAMDyxWcNZfaIpY+Jb+8R MxEyDAAAACwGPnOI7TL8/4/mxY8ZFveBviQAAABYTHz2ENtS3rx5E3GO4ec/ iWN6430tAAAAsPKIY3/5/qFIX/xcbr4sP4Y43tcBAAAAKw+fQfgsMj4+Tv/x H/8RUY4Rx9jw86HifR0AAACw8vAZhM8iQ0NDEa+RJ87hxvowAAAAEA/ifCNe pGNkxHLxvgYAAABYucQ88vr1a+QYAAAASCjIMQAAAJCokGMAAAAgUSHHAAAA QKJCjgEAAIBEhRwDAAAAiQo5BgAAABIVckz0mJEuOpm/mTZs2EDb91VRz+TS 3i8AAMBys2RzDDNCNy5epIuRutxM44ty7xiq2fB/0S9/+UvJ2n0tS3i/FmIG QnxXl6mhqY0cI5PxP1cAAFhWlmyO+eMtWqeoy8P3Cd0en1mEezdMRet+rjr2 z7+qpsklu18LRfBdJW8+ST3MEjhnAABYFpZsjvmhhTJ++YvIc8wvUhcpx0zT o5pvVMfeV78w98Oq/S6V7+oXyTbqj/c5AwDAsrCUc0xqNO0xXI5pXaQc4zc5 TuPjIzS+0GNYrNqvRd9VpJnzs4Md8T9vAABIeEs2x3Am+bp8cpL7k8fQ5FCd qv/iF8nF5OTfl7bht2eE8sPUdLGSKvnxGZWVdKGpl3tvjHvvOOXv2EE7tmyh Iw296mMyI9TWcI7279hMG9LT/eNst2zZQUdPX6H7zh905zfefZsqKwNjQPg/ 7wxOaT6rFD677B+rywzeodOHdnP7Tad0fv87Cqn+/tCi7Ve+zgG6UXnEfw92 7Min/YeOcvfnkf8zR9MlYf/8vWumkXC+K02O4b8XuRxDg931tPVDTc75RQ7Z GfNrGnfcphP7d3Pnx31X+Sf1Y525a+C/yx3cd+S/5g1bKD9/Px2/+D0NBst+ UV17FD9LHOfdejqav9l/funCz9L+o1XUpfg+9RhytF2iQ/k7/D9/fv5yZ6gp yHfKjPTQ5dMHhfsRKLeFux/ll5uD3w8AgAS3lHOMjra+/LzUfEyvbszGJ5Sy Tl2XrlW0CTxp+o4+DNGGsP3cQ9Ux2ov+SfX5vzaNmX72BVffme3/98c7FmW/ vB8ctabtXF8cOkN7VGNzwhxrFMb3MvOkVn2einYz7TX9fXqK5tzU5zHEfVdB x+Nw+z53/48Ld+0R/ixNM/10csv7QX+Wdl98oL+PIy20UzM2Sit5e60uW947 vS1E+9cn3P0Yjfu/NQAAVkjoHJMcJMcot/0weN/GD73nw+4POX5Xrh/vHf0X 1Wd/aBs1/SzYefDOdf9g+X6nR25F1lcXbh9dWN/LGJWk/GfV/r8TskbIa1KM eRpqPhD2+auyTCzXHsHP0vT0gG6ctpltl/oU9yf8cp8e75TKjYZ7P36RQXcm F7G/FQBgkayIHKOrIz8M1D1HAnVP8/6PdP/mn758gy6f3qer+5RzoCPOG5z0 LVsoQ9vH8kv1eBGr9tt+6L8Y1tdbdmwxbt+IIceMaLeZ7FB/H4psYnZNvA/5 a5LOo4d2Gnynmw+dpKP5X+neV/ZvxXTtEfwsPbnyjf78jp7x91UVpn+gOYbc t/bDozLd8Y9cbqbu7rtUc+j36uv6QLyuSarSzNH/fPtJarrfTXebLlCW5ufh X9vQJgMAy89KyjG/SN5Jtx3iv+UMMcK2Dy7+wT9WIj8/n/uziO4o6u6Z3grN PuQ6OqK8wWWj605xXMQYVWn6HaLOMeHud6qLsjT34++/KqMB8X4xPVSU/p81 +44yx3xeppknPkw1+R+b7tsox2w+3kzjQh3PMIExT/q2hw/pXLfc5jLUdFi3 H397VKzXHvbP0jCVqNpUPqTy++pxVdfy1Zn5cFvg/Kd6z6r63X7xWbWq3Pcn DtL+Q4fo0KH9dLC8Wbi/k1Sj+b5PORU/u85G2p+/nytziPvzEPdzoh/jBQCQ 6FZOjvmQLjnDa1efHB+hQaeTHA4HdbedU7XJKMd+RJI3fl/+WHWMH+4Vq+tF q/c7rpn/xdXT10fU92NmyHwMSyTfC3+vt+SLufArw/aOD7ZflXKk9po+2N5o eBxtm8ra3Tc12zBUtUFdr3/Lz1mP9drD/VnSHofPMU1t1NTUFNDWRlWaPCe2 4+jaY/islZJFh05U0o22RzRiuOaOvj2GP+ZX+UVUefkGdTtH4v7vCwCA1VZK jgm6LWfkfj3lb/hcV5doKfcTSd44fFcz7nS0UZ2PrN5vWGOkNWvwRZ1jQuD7 lBQ5Itj1KoWznXYb//jbWK893J+lWOafM3baGqLsh+sy6ODFe1L+4z2qWh/i GB/SF5tLVHPeAACWkxWTY4LMbeq9sivseifavKGrc4NciyX7Nej7MazLP7Q2 x/j7Y5zqOjXaHKPLcNP6sU6fGeaYCK893J+lKHLM+4rxVlPORl3/l5EPttcq +u0Y+v7ol2Ec60O60K2/XwAAiW7F5BizbY3GTqRspaOnK+ni5Qa6cfkPyybH qPtWcqhL21ehrYdjyDH8uOMtCjvyD9GlpkeqtoSwr8lku20X+nTbaPuefl/+ MPZrj6A9Rn2cLKq/f5/u3r1rqntQO2Zlkhx3r/vXA0pP+XvjTGKwZvXkSA/d uFhO+Vu+MJ2HvxZrDwLAMrTSc8xU73nVv/s//6JCNUbVaJxvQuYY7Xwhzu+O qOu17w99qqsvF2acb3Dh5pgHJ/9fzXdRrJ4XNaPvm/lD20Ts1x7uz51uTlYW 3WG092+SnE6nRFqvmRmnwcFBzgiNjIxL2zOT4+RoO6c7f3F88PjIoL/cyIhy 7WeGxgcdVLP/d+r7FWy9JQCABIUco84xv/j7rXRbmNcx4ritW5csYXMM59qO Nbrf0ZM3l1BDw2Uq3LDW8Pf+BZt3HUS4OWZmqE7X1pC8uYIcXL0/PthlOOdI HM8b07WH/XPH0BXN/KGff1FMXSNCP9q4nQo1a+hsq3f5P9OuBfjZwZuKtqt+ KtTMg7rE982Nt6jHUPPXq5iT9OTaXtU+lWOrAQCWi5WeY4x+Vw8mkXPMlHZN 3VAWdB08c+HmGKOcEMzag4qxJ7FcewTXN/XorOH+Ply3zuAYWVL/1mjzXoNy n1C6bm1jZTnjtfPWpaTr1hvmaee2AQAsB4mWY8zm+OiM67cdMdm2Pcg6bEY5 RtxPrHnD7Pys2i+PX9Pf7Nr+fsNOyloX+/gYq9pj/Pi1XjRtGkZ+/oVifZhY rz2CnyXeo4vhjRv/VvUc8wE6qW1PMnFYcX9G28yvSXs/IvlOAAASRULlmMkO 1Zhc43knxtvy/46btxEw1Hz6W93v67/43Eb3nXdo54fK/VRI+3lwRj1PRDl/ Jthnfpq6/+dfVUtjSqzar2TcTpVHd/ufhel/xuKWPVR+mZ/PO0ln0hXrkRiM JzWkPWbQe60X8pp0xujaUbNnCn2im5sc87VH9LMUMHr3vDoXKXy+pYhuO4yu cYy+P/Gt6bOj/OWMnlfquE570pON78eHqXSwsj2i8UoAAIkkoXKM5SYD4yXH B8k5uPzWEBu6e50uX75MDQ0NdONGk669Qj9nR143f0liuO9r0Ml9V9z35eim buegaX6J17Xz43Cd/HqK3d3kcDhpRHoeezCMv5xDKNcdZjl+TPCg00EOvgyH /xnGeBgAWO6QY1aOazv+T01fQyFdv+/wZzfH3Uv6Mc1rI2tXWcpW8rUDACxn yDErxx/bi437HkwcD9m/kzhW8rUDACxnyDErS3hjUD+hIzd6436uuHYAAAgF OWblYUZ6qOH0EdqyIZ1SUlIonftz3YfruD930vHLzSbPJFweVvK1AwAsR8gx AAAAkKiQYwAAACBRIccAAABAokKOAQAAgESFHAMAAACJCjkGAAAAEhVyDAAA ACQq5BgAAABIVMgxAAAAkKhizTGjo6MAAAAAcYEcAwAAAIkq1hzDlwMAAACI B+QYAAAASFTIMQAAAJCokGMAAAAgUSHHAAAAQKJCjgEAAIBEhRwDAAAAiQo5 BgAAABIVcgwAAAAkKuQYAAAASFTIMQAAAJCokGMAAAAgUSHHAAAAQKJCjgEA AIBEhRwDAAAAiQo5BgAAABIVcgwAAAAkKuQYAAAASFTIMQAAAJCokGMAAAAg USHHAAAAQKJCjgEAAIBEhRwDAAAAiQo5BgAAABIVcgwAAAAkKuQYAAAASFTI MQAAAJCokGMAAAAgUSHHAAAAQKJCjgEAAIBEhRwDAAAAiQo5BgAAABIVcgwA AAAkKuQYAAAASFTIMQAAAJCokGMAAAAgUSHHLL75V6/p7L0Z+rTsj/Tevw7T //7tkN//tmsQAADi5P79+4umq6vL78GDB9Tb20sTExP06tWruNdPiQg5ZnH9 MMvSuu/+SP9pP0N/Xfzf6KdHX9M7Jf8GAABx9uzZs0U3OTlJY2Nj5HQ6yeFw 0MuXL+NeTyUa5JjFw7fD8BnmL22euP99BQAAtXjkGKWBgQF/lkG7TGSQYxbP uXsz/naYeP9dBQAAvXjnGB7fLuN2u+NeXyUS5JjFw4+H4fuS4v13FQAA9OKd YXh8HxM/Xibe9VUiQY5ZPH+9x0XvHH0T97+rAACgF+8Mw/vhhx/844DjXV8l EuSYxYMcAwCwdMU7w/D4cb/8HKZ411eJBDlm8aBfCQBg6Yp3hkG/UnSQYxbP WYzzBQBYsuKdYXj8OF9+LZl411eJBDlm8fw39v+jZMy7BgBYkuKdYfh51z09 PZh3HSHkmMWlXQcP42UAAJaGeGQXflwv1sGLDXLM4uPXw6u4O0P/z4lxehfP JQAAWBLi9VwCPr/guQTRQ44BAACARIUcAwAAAIkKOQYAAAASFXIMAAAAJCrk GAAAAEhUyDEAAACQqJBjAAAAIFEhxwAAAECiQo4BAACARIUcAwAAAIkKOQYA AAASFXIMAAAAJCrkGAAAAEhUyDEAAACQqJBjAAAAIFEhxwAAAECiQo4BAACA RIUcAwAAAIkKOQYAAAASFXIMAAAAJCrkGAAAAEhUyDEAAACQqJBjAKzT29vr F+/zAABYrpBjAKyDHAMAYC3kGADrIMcAAFgLOQbAOsgxAADWQo4BsA5yDACA tZBjAKyDHAMAYC3kGADrIMcAAFgLOQZAiyXGPUZujzfmfSHHAABYCzkGQMP7 iLLT0ig14xx5YtzXQuUYt+M2FW7LoDVr1vglJ6+nospmcs+FUX5uhGqLsylZ KMvbWFhFgzNvrD0ux9l+lSorK+lquyuq657traCU5GTK2N1Ac2GWCfeYY50X 6OuUtdK1rVm7ic5FeZ6x3OO4lQVYJpBjADRePqJdfI7ZeoG8Me4r9hzzjGq3 /ZqSkpJMrKYy+5RpedZ1jd43LfsBXXT6LDnu67lBOp75jrz9WweIieL6O/b8 ZaD8x+dD55iwjzlHN/b8rem1/eyb8DNTbPc4fmUBlhPkGACNJZNj5ql+05/I 9evGE3RvaJJmZhhytJ+l1FVyprjt1v/+/WaqVVHPfUIXO100MzdHo/YrlKqo 7/RlYzvuWHsZrdbWq785QjMRX/8I7fmLQPnsq8NBt43kmB22X0nbfLz7Eg0x MzQ3M0L1hZ9K77+zuyWsc4z+HsevLMBygxwDoLFEcsxsb4lUr6af6zPYZoIO rxPqrM+qdW0IN6Qskkb3tP0Mvge0Xqzv0htofkGOO0/NioyQ9NsCqqvKDfz/ n0WeY96MXaa3/ft6m66Y1seRHfPNpLjPJPro2H3993X6d9K+LoyyIc8x2nsc z7IAyw1yDITmIw/jJo838O+6lxmiHnsXdXV1Uf/YC932PmaUeroCn9t7esg1 xpjvm/UR42bI4zOvM1ivh9yMh3xBzum1z0OufnvgmPYeGnB7Ql8XV2agRyjT 08+dp1CGyzG5SyDHdB/+pdCucMI0A7yZuiX8Xv62ut7l6rJ1Ql22r+25YVlf t5hXPlDVhdEf9xkdeU/IP0Ut/nzD9v4h6hzjqt0g9A8V0ITpdpEds/v4PwQ+ e9esz2maTqwJ7O/XRfqco/75if4ex60swDKEHAOhvHCeozSuXt9a0UqtFTv8 /1+UUvJI3padoPriLarPRalbj9Fj5pV+345y/+fpJ83qei+dz07xb3O654Xu nLZUPaLhjtOGx8wqrDcdk8GXyTQok1F4g7wv+5ZAe8wcVaX8L/66KOvqeNDt xHr301Py38epjjyhHttMg6ZlR2i70EeU2zi+AMedptqvN9JFx6y03Wx3tDmG Pw+xj+dOkO0iOeYE2YTM88VF836qyRtbpfw0EuQco7/H8SsLsBwhx0AoYmaQ ZVJBcSmV2groTIfwb6TvKR1OS5W22Wo7RXWNjVRdukdRLpfa3a8M973ljHmO uZQj5pjpoOdUWHaeGhtrqTgvQ85ZhW3EavY52LhPLpe6i8oqKqiioox2ZQbO Pzsvz59x4ptj5HaGQ/eCzf+ep9r1P/Jv92fffC+93yX0tfz5xu+DHqcjP7Dd T/ffX5DjakWdY9jH0jiPfZ3GbQ4RH3P2rtCGtJquBOkz4tuaVgttGW1B2jKi v8fxKwuwHCHHQCjKzJC69RQ99er/be8u+0rYZiNd659Wfca6H9JeIeOkbr2s ygYLkWNSs45Rn0d9Ts66/dL5tDOKz6bv+edUB9peGjTtNc/pevEGxbXGM8fI Y22Dt0dMSGNhlX0l3Yf/0f/e34Wow8Q+JHm72I6rFW2OkftFPqGHc5H1i5ge 03dX6I8J0dfiE/NO8O2iv8fxKwuwHCHHQChyZsilTo/Bv+u+PimnHG03/t35 1XiD1G5yc+yVbt/R5xj1/mQTdExoXzljl8sN1u0OlMv4zmTMxTM6lS1krqz4 jo+R+jeSVlOjyTjXJ+IYEs38HLGuSz8X/O/oVMdeXWaJ5bha0eaYLnGMzsdn IpoDHfSYUo75knrmg2WjZ0L/0wd0mwmdY6K5x/EqC7AcIcdAKGJm0LalaD9P Sz1Co6b78VF9XoqQdSZ1ZaPNMeZZwysdTy4n72v/zT+aXu9k68ElkWNes33y vJOkT+icfUz+bP4ZNR//Qs4SJjkmVJ+MT5yb9LkiL8RwXK3ocswzaRzLpyHq 6oiOKeYY7v3ga9nIY33LHC9Nt4vlHserLMByhBwDoYTKDHLOCV7vOy9t92+3 QZFZrMsx3PGqt5vmmMp+/Twr0cvhK0ugXynA9+SCNE/Yb9VqWrVqleK9D+i7 8t2B/zbIMaH6FJ5U/U6Ym/NoQY6rFU2OkcenvE0XhkLPfQ77mIp+pWDjXvix OeuFDHcvSJ9WLPc4XmUBliPkGAgl7Byz54ZmbrSamCu2LIEcc9Vl/ns2308W //lKsnn3Qzr89cfqNhDO2q8PUw9XH0/Wf2U6hiLU3OFgdWI0x9WKJsfI/Vo7 gs4XiviYs+GNewk378Ryj+NVFmA5Qo6BUMLOMSH6YYLmmKonJuUWNsecz9HP 4dZ6OXhhafQrac3P0QzDEMOZmxffn5fmJyvrq97j/yz0+ZivAcPPbT6dnBT6 d/YIjqsVeY6Zp/rMwDyod74Jb03dsI/peyDNgTpkN5+L5es9KfWpBcs7sdzj eJUFWI6QYyCUUJlBrPfTUvdSn8/s3/1ndFZYB+aEfUa/b9O2nOdSuQVpjxHG zOyoMctNr2lYGAsc7xwz775L5cXFdKqu23xN1ll5fXrlWA7WdV4aq2s6VlWa l8OVVTyLJ5bjakWcYxRjc75t/yGq+2Z+THmueLCxr2I7htEayUqx3ON4lQVY jpBjIJTQmWFUWjtmT82Q4T6mu8ul+UXNijVkxHXw0lIP0JDhsS9K86BjzzGv afzWQWndmMcG88dfs0/pQNrSmK8027U3RH01Tze2/1VgG92at/K8aLNnBXUV CvX1j9X9N7EdV3MNEeYY3xOxLSTEGJYojznVnCft33AuliKfZYVcPy76exy/ sgDLD3IMhBJOZpDmM3OKrjpUbSvjXZXS2rkpRW3qsi8e+J8B4F9/t+gGMaz8 2VR/g/TZQuUYcexLYO71YXroVrRhMI/pWLa8ll/cx8e8GaRN4riU3xZw56oc 8zpHN2z/JI1ZMVqzdaxenhudfkrd99OrmDetmxMU43GVIs0xveJzA4L2mQQX 9JjKa0v6ku4pc9pMj7QGLv9Z/3zoY0V9j+NYFmC5QY6BUJSZwWO6nZeu29Ll dXIzsyknJ4dyFLmAX7NlyKcv6zi/Xb1WsM1GedmZumcGmOUYs3MyzDGc6Z6L qv1m5xWQrWCrvBZxcXHg+UpBrzc8sY6Pmeo6qBpj+9uUTZSfv43WrZLf+6jI rI9kjuq3/7W03U+S19O2bdtoffK70ntvZVwy7DuJ7bgyZaYIPteZJ893/uiY 0fMpwxPqmKzriuLZ2G9T5tfbaNvXmar3zobdFxP9PY5fWYDlBTkGQnk5KMxD 3tkQon2CJUfdUcPnFhVWtwbJBIFy2jKZOQeo3TVGt4U1dmsGXkR0TuI87xqD OdYvXE10QJmxhLV/T15zEvvqqX9dv9SdxuvlRGIhxvnOOq/R+vfUc4bE+nb/ 1VD7nqeO77IMyibRZ8JzFa05bkAka5jI861jG9MRzjHZ0VbaZHRtP/mSGoci PXb09zh+ZQGWD+QYWHg+8ng85PV6/c+y9rJhlmP5Z1gH5sV4PIszNtHLnaeH O0/+fLXPYVoICzlfacY9Sk6Hk4acduq0O4kJo99DND8zQvbOTnIOObk/7TTK hL8uSyzHjcjcIFUWF1Pxd7U0YtUxVOZpVLgmp8NOdueo+bhmi+9xvMoCLAfI MQDWWdB51wAAoIMcA2Ad5BgAAGshxwBYBzkGAMBayDEA1kGOAQCwFnIMgHWQ YwAArIUcA2Ad5BgAAGshxwBYBzkGAMBayDEA1kGOAQCwFnIMgHWQYwAArIUc A2Ad5BgAAGshxwBYBzkGAMBayDEA1kGOAQCwFnIMgHWQYwAArIUcA2Ad5BgA AGshxwBYBzkGAMBayDEA1kGOAQCwFnIMgHWQYwAArIUcA2Ad5BgAAGshxwBY BzkGAMBayDEA1kGOAQCwFnIMgHWQYwAArIUcA2Ad5BgAAGshxwBYBzkGAMBa yDEA1kGOAQCwVmLmGJbcrgEaY7xxv3+wPLFehsbG3ORlY9sPcgwAgLUSMccM X99NaWlpnI3U6XkT93u4FL0YaKCCvDwqPNlKviVwPonGcfb3/p+xEz3TMe0n 1hwz735INZU1VFMTBPd5j5s13cfc6D06/PXntOa9NbRmzRpKTl5Pu4urgpbx m5ug5sp9tD452V9uDfdn5tc2arSPhXf+M/1UV1lJlZV11D+Dv6cAYI1EzDHO 85uFHJNG18Zexf0eRsPn7qNbjbfI7oqtnjTTXfaV//6k7ryBHBMFZ/V2//07 HeccM9u9l5KSkkLKaXtuWP5JbU7Qcvsahw3LTXWfpNVByr2VcYYmgpy3q/kg va3Y/luT8wMAiFUi5pjX3iFquXWLWjqcCVtHi7/vp598ZMH+J+hUZqp//4ea x+N+rYloqeSY3uP/7M8Ba7cdppoavm1Dr7y8kh4atK246jfI2WNtAbU5J2mG cZOj/SylrpIzxqF76v7ZN1Ot9L5Y7idpdK6pl5iZGWJGe6gq/yOp3J998z3N a895foROb/qpPi91IscAgDUSMscsA2I9uaVq4cdOvJlsokx/e1UmNTNoz4/l +4l3juk+/I+BrPHwZWRlZ+9KWeStjEs0p9vmGR1eI+SMj8+oPu8+/g+B998q oBGDfT+p+p2QTz6ge4r+Inbsmpx/OLsr62n7e8gxAGCtxMwxLHm43ysZr0/1 Puv1kJvxECv8t8ftIru9i7q67NTT7yKPyZhNbTnWO0H9PT3UP9BPPT395Paa jCNgfcS4GfL4zMcZiPuW2o1YL3m8DLUWfxFojylq4q7DQwzDGI8p9XnI1W/n rqGLu5YeGhhjpPM0M37rYKDfLaOcGM1n6nsywB07xBiJ117p+F32wH0Mb+yr j8b6ewLluGP1D4yFVc7HjFKPvwx3vdx34OKuN9S9jfT7Vt2PsQHp2voHuDK+ wPtLJcd05P8qkAMi7Jdx1f6LkCc206DZve4tEbb5knrmxTwyR2eEfPNP50z+ fr/po/VCVim1y205s11CH9hPvqTbQz7/vk6sQY4BAGslZI7xPqJsfuxHxjny Su976Xx2Clf35NJD9wCdzUuXxtDINtLVninN/sRyG+mxz0f3K/INyqVR0VWH 7jxeOMqFviGzekrcN18fvvC/J/YnGVHvh6XuukPG22bspWbXC5Nj+uh6wef+ 7TYo+qxY90M6nJNiuL+dJ1sV91E2ab9CuYbnyt1Hu/Y+hlMuk0quOY3LsRNU X7zF8PxStx6jx4x2HFS037fAN0RnC4zKZNK1gWkarNu9BHKM2Gaymq6Mhsqb StNSfvj0VF/Qbefn5zjq9+bcg1wedJB7zqTcm0Ha5M8xb9MFxXn5eisoY/cl mjE4D+QYALBKQuaYl49ol79+u6DKMZc09XRqzgGqrmuk2ooioZ8l4KZqbLBY biPZbFul+q+kuo4a687QLmGcSaAPSD2W5YXzXOD9M+Y5RjwnsT6csl+j0rJS uZ5P3UVlFWVUWlpK1xR1rvPSdum4WQXHqPFWCzXWnlTkg43UbtRnxD6lvWmp 6jrY1+e/X/K1XaeWlkYqk66Xy1AlD1T7Gb59UJWbKqqrqbq6THU/TnZN6o6v KsdljLLaOqqrPUN52XK5nZr7+Nr3lA6nyZ9vtZ2iusZGqi7do9pXu9voe4v0 +w4c74DyeMWnqKKigsqKd0r3KC8nYwnkGDEHfOJvL5kdukc15d/Rd+XlVF5Z Q02dTxSZQUHqU+JzBv8zMkfOzkb6rnA35W/Lp/zCYrrY1E3MfHTXNHZjq9yv NBes3xI5BgCst1xzTJH2935vHx0Q6uAsVZ2tLpex8wJNqPojvNRaJrcTKOdH RZNjRIO14viYJ/py7JBUz5boxulO0FmhjWfDGX3Zl86LUj7q8wXqmOHGfYF6 PqucRjV9LVP3j0t192Nh+9cvHkh5aevJu5q2mud03bZBOMYBGlLub/qev53M fx8LGzR9Wiw56vZLbR7KDCbOreLP4Vq/+j7x7UhiLkvdenkBvm/18a72q9tr pgcbpGuIe45h5f6b36b81mTu0Go61q6ZB+27S+v8n6VRu+M2rV9lVC5QtrRT n0XNzM9MUHN5rlT+o1OhxqgjxwCA9ZZjjskobDMsN3XniFCfnyOPQTldvSx5 TueFbZR1Yiw5Rhrna1RWyjG5crZQ4Odsd7R0UJ9bP/bTIcxJT93ZII3JEXPM FoPcw/dD9Xd1UEeXU7qXw0KfSmrWBcV9Ungj56yj7XL9JPbFpGV8ZzIn97nU z3bCPhN4z9cn5RTlvpRejTdI+UduW4ny+1a0Vx1q/sG4nJTt4pxjFGN1xblD x2qaqbO9iU4XblTNay5V9vNJ5VbTaiHD/GTtdrrY3k1Op4NulH+rKnvW6TM/ f2G+lNanp+6HcQ3IMQBgveWYY8SxKFovBy8Iv9cbl8u/OmR6TKM60bIc83pU 6mfJsp2nASbcuSrPpbaa/Gsj0vuTrWJfz0aq6hgMMVc99H3kie1JG6Tzl8vt v/lH8/2zPvL5fNLYXPEepqUeoVHTc/JRfV6KkHUmwz5Po+9beTzjzBq4/8cy U5dAjmmV1nDh12vRjtl+PdMjzQdSjued7TqoyhzpRpmDK7tJbKf5zQnj/in+ /E8H5iatWrVKnWX+4n3afzXU33/kGACw3vLMMSZ1T4hylf3m9bY4l1nZRmFd juFygtCGIsrM3kXFZeepxT4ozanRkfp1MtVjQvg+FsV4EP7zvIJiqm5soQG3 R3fO56X+mlwqLraRzabGvyeNGTLIMcHuo5Z4D9XfiZ44XsgoN0XyfYd3PHms dFxzzPwEXa88ReWVN/QZRvq5vCZlnUPC3KE3U7fkNew+qzaYcx3Auiqkdplg bTKyeXIP3SNbys/k9e0ag61PhBwDANZDjgmjHE8cK6sYd2JljuFN9TdTacFW VZ4RFVbd17WriG1GaakG/TrsBLVWl1BOZqpuX6lZB6hT6qPSj58NxihXXB0I f60TKVfsCb7usP5+xZhjwjxevOddhzZHp5OFNX1vC/1k0vgYLj/cC/YMsmlp DZnIcsYc1a7/USDL/OyIaVsOcgwALAbkmPDaEcQxGkZ1ouFY3RDnFE6OkbBe crv6qaWxivYq5v3sqFH2g7HUavvCcFyrltfjpn57s3o+kJTP5PaYo/x8JKEf yAzLytd6Poz+KC0pV2SFaI9Z6BwT9HhhZtswLMZzIsW18n5dJPQf+R5IOeaQ PXiOiTZnsE8qpLVn+k3nPSHHAID1kGPkclvOmM+/GL8tzvnRj48x/91eHq8S U45RYel+xQ5934hijtOJIGu7aLHuTmlOdpU/f3ilsShBx7noyGNYdpjmusBz pN1uec0/cQxLWupeqZ1L75l0H6XxwVF+3/Lxdpkfz2juepRiyTGz3X/wZ4B3 vmkJst0zOvKetu1ljqpShLExZmvZ+Y3Q9lWaZxPMPaZN/P7e3WG6fh7vzdhl oU/qE9WavmrIMQBgPeQYZT9KLnUarcnyZkgad6uso8V18PzznAyO90KcA22U Y4R5RUY5xjfWRDbhWdVGa/e+EsevKjLVy+Er0jU89CqvwUetFYWUl2ejZsNn avp0900aF8xd11PDsbBclqotIZutWLUen1xuFz32GtVtE3RMylpiHpHHNO+p MR5nPd1dLo3raXbr5ytF9n2PGn6XSoN1+0y/t0jFlmPE9XY/oDaT50v4pG2S qMwh9+dNNm8R3k+jhyZrvBg+X4DLMalin1SQNYQ7bIF1hpPePWA6dgc5BgAW A3KMZjxIxl5qH5PrZtbzlE5Jn2+khx5FnaBYZyWr6AYxijp/qr9Btaat9pym xQyUcZieaup8qc2AU9IyqPqM9fTRMaFvKaWwTco54vwh9RorPDmn8OvHPFU9 h4ClwVtHpYxwU8wIivaI1Kxj1OdRrz/XLa0DkyaX0ZRLyzhAD5Xzwn0TdLt0 i2FbiDRfOy2wbrKybWu8q1Ja0y6lqE11HtF93/K98o8zqutWHI8lZ+NR+Wch 3v1KivVjkn68mdpG1WNxJzvPyuN5Nc9I4jOj7T2zsvPUrXgO9ju776g+q8/8 kWJtGpfmvKap4/gXivnXwdYLRo4BAOsldI5RrW+iHJ9hXq/lGpQT68PsvByp /srOyaGcnBxVnXa0Qz83w3F+u2KbTCqw2SgvO1M3HlZ7Tq8mv1d9np2dTSU3 h6Vzum5TrJmfmUvFpaVUrBrzy7cd6dsmdhi0abwYaFAdK6fgMJWWFqvG/G44 qR5T82LwimpN3JwCG9kK8lTv7TR4xuXL4QbVNtl5BVSQp76P+vnt2uvN9t/7 HMVYIH5NmiGfukx03zfvOV3KS1HdX/57k+4Hl7OKbVnxzzGvA2v9K+c7/03K JioszKf1a36seD+N7hm01yjnMgXW0ltPKSmZtG61Yv70uwU0qB3fwuWnTcq1 895bR9vyCyl/W4Zqf/xcKPMxvrxoxxEDAIQvoXPMTmXbg4/qhbmyNQMm40wN y8kZgC833nJCl0H4Npqb/Wb1Gb9O7VFdmcycA9TuGqPbxRtMz2m4o1KdJVR9 TF5/30229lz4/FB8iZ4q20gU6+hedRnPFfKNddKxvCz9tWXu8q8pY9R/5XM/ pGPC+vzaa7tmN59vy6/BeyzPuNzNfrP1YwP3MdPgegurWw3W44v2+5bv752K /bpjZRWc8rc/DV8PtBFFMofcyEKM8/UN3aLtye8arke39pvTNGL2HCTOvPsu 7VHMk1baWHTDPIfMj1BtYbrJOsAfUFFdN82HPPdpaS5VqWPWmn8LAGDFS8gc s6AM1lNjfeT18M+gdquepxwUV8bDMP7nVns84azFIfPP/WHNngPICufCBHkm 9ig18s8/qr2teaaCHuvzSufJeILNZVGcn1c+vscb/rX5vPKxwi/H3Ufuer1c WcZtcr0LiX/+OH88jifks78jt5DzleaYEXI4HDQ05CS73UnumfkIyzr9ZR2O IWKCZB+V+RkadTq449n9nEPuMPILAMDiQY5ZuDm2AFqLMe8aAGAlQ45BjgHr IMcAAFgLOcYrPbswkvXbAMKBHAMAYC3kGH5tNn78R5jjYAAigBwDAGAt5BgA 6yDHAABYCzkGwDrIMQAA1kKOAbAOcgwAgLWQYwCsgxwDAGAt5BgA6yDHAABY CzkGwDrIMQAA1kKOAbAOcgwAgLWQYwCsgxwDAGAt5BgA6yDHAABYCzkGwDrI MQAA1kKOAbAOcgwAgLWQYwCsgxwDAGAt5BgA6yDHAABYCzkGwDrIMQAA1kKO AbAOcgwAgLWQYwCsgxwDAGAt5BgA6yDHAABYCzkGwDrIMQAA1kKOAbAOcgwA gLWQYwCsgxwDAGAt5BgjLLldAzTGeJfAuViP9XpobMxNXjb+57I0sMS4x8jt if37R44BALAWcoze8PXdlJaWxtlInZ43cT8fqznO/t5/vSd6puN+LkuC9xFl c/cjNeMceWLc10LlGLejkQq3ZVDymjW0hpOcsp72l9+gkTmzMvPUff0i1dTU BHe9l+bjfb8BAGKwUnOMz91Htxpvkd2lr7ud5zcLOSaNro29ivu5Ws1Zvd1/ raeRYwJePqJdfI7ZeoG8Me4r9hzzjKoyf0pJSUkm3qbSzkmDctN05D2zMkp7 iYn3/QYAiMFKzTFiG0T6yUf6z71D1HLrFrV0OMm3BM7VasgxGksox3TZfiVl js93V5Fj1E0zMwz1Np2jdVIWWU2No6y6rO8Bpfo/+4SKKmuosrLSQDlVXu1G ewwAJLSVmmPEuntLFcYuIMdoLJUcw2URMavkNo7rP2cf03rh85/uv68pezdQ 9jcnaC7e9xMAwEIrLsewXvJ4GWot/iLQHlPURIzXQwzDKMa5suRh3Nz7Pk15 n/99jzfwuy/rcVOPvYu6urqoZ8BNrGpblhhXH9m5z+x2O/W7pkKem5cZ8m/f 5S/TQy53LONMveTqt/v31cUdv6ffZTqON1SO8XHX2d9jl89rjNFcq4wfM+xm PNLnrHeCK9tD/QP91NPTT24vG/LcPW4Xdxz+PvDnPcB9D6HLRHXvfB4aEK+L OzfXmCfwPpdjcpdAjvH1lgjtLWnUP2+8javqXwLbfHyGZhTvv5m6Re/z7797 IKZ+I2a0n9rbm6ipqZ067Q5yz8zHdD8AABbaSssxYn+SkfSTQn2jGOeprMde OM8F2nCqH5Cj8ZB+HxkH6LH3Db1mHtKB7FTd5xl7ztOEUZZgJ6i+eIvhOWUV 1RuXCWLSfsVfD+v3t5Gu2vV5yjTHeIfovG2D4XmlZh2gh4x27JCXzmen+I/z 2Oej+xX5hmWLrjoMz5t1P6TDOSmGZXaebDXOFFHeu+GO05RpUCaj8AZ5X/Yt jfaY19M05HCQw2k0/iXAVbvBn2P+fGODqn9otuug8P73UfUbsaOttOl94zE1 H+9uUGUmAIB4Wmk5Zsp+jUrLSuV6PnUXlVWUUWlpKV3rEep4k34FMcfIcqmi to6qS3fK9Xv2LtqVGcgwWQXHqK6xjkoLsuSsVHRXfU7sEB3OlDPPztKzVF1d TWXFin1mnaOJMK9v+PZBRa7aSxXcvqqry6Rz4p3sUteLhjmGHaVjyvMqPsVd SyNVlxXK+089QEOqnOClSzmBHGOzbZWyU0l1HTXWnVGdw5YqzbgkXyA7yGWu U0tLI5VJ++HuXcmDBbl3g437FNfAf/8VVFEh36PsvDx/xol/jgllhPYIY3l/ XaS+n77uQFvOR8f6iM9Dndcv0nfflVN5eTnV1DWR0z1rvl9FfxY/9uab4iqq qztHezJ/I2WZP/umJe5/lwEAeCstx4gGa8XxMU/0n4eRY/jPlL/rT/dfUWWc kpZh1T6ddbuletPfZiO876jYLL3f7HqhKjPd3+BvF+I/z782Evq6XjyQ8tnW k3c1dfBzui62rWjyh1GOmbpzRMpq7W51uwvr7pSOc7LrueIzMccIbRs7L2ja Q7zUWia3nSjngg0L2SI1q5xGNW0oU/ePS/nmsS/Gezd9T3o/o7BB0+fC3aPi DarveGnmmHlyO2/T9jVvSf1OD2fU6wM8qfqd8NkHtG61cbvKuxknaMRg/1LZ dwtoUNOfNdmcJ+Wbe3PLf00CAFj6VmqOkcb5njGoY0LmGK5uZ/T/ht8R6sDU PTf040fYp7Q3LdVf9qGYY6T3zMemjN8W2g4yykO2yQwLWSk164LxuidvhuiA cLyj7c9190J5DoF56Y3U3GPcpyFmCPX9U+QYXVuN6DmdF7bJUrSviDlmyxmD XPnaR/1dHdTR5ZS/jyjv3aCYJzO+M7mfz+iU0CfI38clk2Ok+UdaX9I9g5/F 7sP/qNpu7bbj1NTeSU11p2jTurfkzz4+oRs/I+aYv9tvMJfv9RzZm67T9aZu 9C0BwJKAHBN5jjH7PV3c5w6jNh6pjs+V2mOk/QWrL9/0Cv0tivxjSM4Qp3te mG4ntkNtUFx3NPOVjO+ffA75V4dMy4ptPXyfj5i3JlvF/rCNVNUxGHK+e3T3 Tj6//Tf/aLpv8VyWVI6ZE+YmrVpFq1aps8xvP7dRv6ZtpMv2n6T1ZU7de64/ r9ocqXzWVfVcqLH6DVKbS9H1Xsx3AoAlDTkmihxjUr/JecAoR5jnGH8/kK2Y bDabBvdejjj+I1fVH2W0//NSn04uFRdr92XzvyeNTwkrx/jIZW+m2ooyKubK 5+XlUE52NmVmphnuR5kTKvvNs9SbyabA+BNlu5G3T2orCsikvIJiqm5soQG3 R7eP6O5deOf3cvjKEu9Xek3zcxPUVbOP3hbzzLsFqj6iSXsjlX9XTo0O83ly N7b/VaDsb06o21ZmH0jzucUslJyyiYoq68kxysT97y4AgBJyjBU5xqhdI3iO CS389phwhGyP8T2lYwZzrniZ2Zkhc0zQth1xTG/qLupTjHfh5x61VpdQTqb+ uPz8qE73S913Edm9k8/vqutlyPNbyjlGxD65IGWZQ/bI5ulL87rfKtD3sc2P UH1xLr2/yqAv62++pNuj2jUJAADiAzlmCeQYfvwGy5LP5wsi1BoqcnvMUX4+ EhtsXz5ig47zZanV9rnUz3PmVrf/mYn8OYjjfsRnN0TTHvNqvCFke4eXX7PG 3kzVpXvkPKLIPdHdO/keBet7ezl4Yen1K5map6qUQL5IPxfh38fZu4E1ZpI+ oXsz5hl5hhkle/tVOrztM0We+YQeYpwvACwByDHxyzFifZmWeoSGYr4mL9Xn hR77EexeSOfNPpX6eK4OGLdbhBofs+WM0RjRAHH8rXJ8TDD8/ChxTnaVkD+i u3fc+Qn3aEeN0RimAOV46XjmmCdVgXEq2ReHg2w3T/Wb/kSYey2u6fuMjicH 5io1us2zxmzX3kAm+dmRsMfssqO3pDnZh+6tjOfBA8DStmJzjGF7gmCRcszr 16N0WMgL+VeN51XzdXipzUZFZ1pDjn2VxsqmHqCnhnOFWLpfW+IfO6Kcp6w7 b2ktF5O+LO5zca6Q6XwlrmynwTwafs6UeM3yeGgftVYUUl6ejZoNn8vpM+iv iu7ejd8S79Eu4/FGigwX7xzTe/qfhfEr5mvyvplqFdpUkmhfpzied5pOrEkS 5hzdMdn/tJB1AmsBy2N556i+MJ2Sk9fT1SGjNsA5ad/y8QAA4mel5phpR7nQ L3GYnmrrs0XLMYp5wJySW07VfG2v+yEdEMaKpBS2mT4LQKKYi5yadYz6PK9U x++u2y8d66ZiTRj9eYvr8vJrEDcQo8hEPvdj1bgZ8xwTWIevfUzOS6znKZ2S Pt9IDz3ifZBzCr9+zFPVcwhYGrx1VBr7qzzvqO6dcr097rt/qBhzwzLqa4v3 +Bh27LzUj/NWxgka1PT9zA610Xpp/MqX1KPo55GeV8D3N526o55zND9CVZvk Z2iXOZRtbnJO4ccO98wov4t5xTynt+mC9tmUAABxsFJzzKvJ71VjQbOzs6nk ptB+L+YYzTosyhxj1B8SKsecF3KMuo3DS9dt6fK5ZOaSrdhGeTkZqnEhwecq Kc5x8Ipqvf2cAhvZCvJU7+3UPBvT6LwnpXXwAvmBn6eUk5Mt7zcvK2iOyc7L ke9tTg5XNkd1v492qOf6vhhoUH2eU3CYSkuLVWN+N5x8oLun0dy76Z6L6u8+ r4C7R/K6wVuLiwPPVzJbhycCsY6PeVK7QTXGdm3mdioszKf1ye+q5hOVObTr 805T1fofKbZZTV9vs1H+tgx5jpN/vd/7umPO9lao53WnbKJt275Wjfl9ZzfW 8wWApWGl5hjecEelup4U62Qxx+y8rPp9/OWgMB93Z4Ph7+mDtbtVYzjUhLEZ hpnER911Rw2e95NJhWXXaTTMDCPyuR/SMWVdLsjMOUDX7PrnJjsvbTccm6u9 P4GssItquibphTA3WT3ORM4xNQMvaLzlhO4c+Daam/0mz6Mc66RjeVn6Mtwx +TVljNujort3L1xNBs/A2kgnrzmJfRVo19J+/9FYiHG+Y50XaP17PzFck/e3 GUfoodusXWSamstzVblF8hfr6FT7mPnP0NAt2q7KSnI5fk2ZaJ7ZBABghZWc Y0T+OS3sEmgjZ33k8TD+Z28zjCfkeJiQ1yU8x5vn0T27O1wseT0e8nL78nhC jes0WIuPuya+PMO4Vc/BDob1eckjnDcT8pix3Tv+3Dxe7nie8M4tUgs5X2nG PUoOh93//HS7wxnBs6fnaHSIf97kEDm5so4hd9g5ZH5uhhg3993xmJkFvz8A ALFCjoGFE+b6MSuI9fOuAQBWNuQYWDjIMVrIMQAA1kKOgYUjz3MKts7cSoIc AwBgLeQYWEisf0yONWNNEhFyDACAtZBjAKyDHAMAYC3kGADrIMcAAFgLOQbA OsgxAADWQo4BsA5yDACAtZBjAKyDHAMAYC3kGADrIMcAAFgLOQbAOsgxAADW Qo4BsA5yDACAtZBjAKyDHAMAYC3kGADrIMcAAFgLOQbAOsgxAADWQo4BsA5y DACAtZBjAKyDHAMAYC3kGADrIMcAAFgLOQbAOsgxAADWQo4BsA5yDACAtZBj AKyDHAMAYC3kGADrIMcAAFgLOQbAOsgxAADWQo4BsA5yDACAtRI7x7Dkdg3Q GOON+30ENdbjpoGBMfKyK/t7Ro4BALBWIueY4eu7KS0tjbOROj1v4n4vQcAO 0YG0VP93k37ywYr+nhcqx7gdjVS4LYOS16yhNZzklPW0v/wGjczFtt+50Xt0 +OvPac17wn6T19Pu4irqcbNxv3cAAOFY6jnG5+6jW423yO6a1n3mPL9ZqN/S 6NrYq7jfSxC8fES5wveSuqcp5v0l8vcce455RlWZP6WkpCQTb1Np52RU+35S mxNkv0m0r3E47vcPACCUpZ5jHGd/L/xe/0j/uXeIWm7dopYOJ/mWwL0E2Zi9 nW7daqE+98vY95fA33OsOabL9ispV3y+u4oco26amWGot+kcrZMyx2pqHI2s /cRVv0HOLGsLqM05STOMmxztZyl1lZxlDt1LvL48AFhZlnqOcVZv9+eYLVUY YwCJJ6Yc43sgZZXcxnH95+xjWi98/tP998Pf7+xdel8o91bGJZrTbfOMDq8R sszHZww+BwBYOpZsjmG95PEy1Fr8RaA9pqiJGK+HGIZRjB1lycP9Dsl4fZry Pv/7Hm/gd1R+zGmPvYu6urqoZ8BNrGpblhhXH9m5z+x2O/W7pkKem5cZ8m/f 5S/TQy53pL+zqs+P3594fv1jL2I6HsvdIzfjEa6RJffAY3+5Lq6c28NqtmWo v8fOfW4ne08/Mb7g5+3j7mNge+E8xhjNvdSch5vRtJ+or/u1z0Oufnl/A26P ybGNv2f1tb4mj9vF7afLfz09/S7yhDHGmBnrC9wfrky/Ylwyy50bozv/yMWS Y3y9JUK7SBr1zxtv46r6FylvzIS5X1etUCZpMw2GPPaX1DOvH5PEjPZTe3sT NTW1U6fdQe6Z+ZjuEwBAtJZqjhH7k4yknxTqBe8jyubHYGScI6+i7AvnuUAb TvUDcjQe0u8j4wA99nL/NjMP6UB2qu7zjD3nacKoDmQnqL54i+E5ZRXVG5cx IJ7f1opWaq3YodpPSsmjGI7npfPZKdznudQ1YKfDmfprK7z6xL9td+1+g/1m UlWXwVgL7xCdt20wPI/UrAP0kNGPWRG/v9M90/rvpeoRDXecNr6uwnpidMc3 +p7la33oHqCzeekG+9tIV3tMcqn3KZ3KyzC8B1cHpmnw0ibd+Ucjtn6laRpy OMjhNB//4qoN9A/9+cYGmg9znyeEtpZPT/UF3XZ+fo6jfo8dbaVN7xuPp/l4 d0PYWQoAYKEs1RwzZb9GpWWl0njRtNRdVFZRRqWlpXRNrJtePqJdfP229YJh jpHlUkVtHVWX7pTr3+xdtEuo57MKjlFdYx2VFmTJWanorvqc2CFVLthZepaq q6uprFixz6xzNBHGtenPL5MKikup1FZAZzrGYziely7lpKj2vdV2lurqzkjX yssryJHq+ZLqOqqrLvHnBPFcmpW5hB2lY8rzKD7F3atGqi4rlI+TeoCGNJlK 7A80yjHK6y4sO0+NjbVUrMgUKYVt6nYew+9Zf62pOQeouq6RaiuKKFPx/k3t 2GAuF+1NU17TWe4c6qjMtlW6L3k5GUsgx4QyQnveC2SIXxcZjB8zIvUpvU0X Rvl2ljlydjbSd4W7KX9bPuUXFtPFpm5ijNp/FP1c/Jicb4qruJ+tc7Qn8zdS lvmzb1os+zcBAMDIUs0xosFacXzME/3nYeQY/jNlu8V0/xVV3VfSop6T4azb LeUmf5uN8L6jYrP0frNL3fcz3d8g5YD8ayMhr0l9fqfoqVffbh/d8dR1+xlV 28pzqi+Q2yxSs8ppSNmPpKjblfd66s4RKQu2u9V5gHV3SjnzZNdz9X0MkWNS s45Rn2YOtbNuv5Qj2hnFZ2HkmKJrTvU99PbRATGnlqjnft859oV0nJsD6pyi vLdLN8fMk9t5m7aveUvqd3o4E+Z8dN9dIYukUbvjNq1fZdy2wucU7TyoJ1W/ C3z2bgENanLOZHOeVO7eXGLNjQeAxLbUc4w0zveMQV0QMsfkqutDwZ3iQB9J 6p4b+vEd7FOhPs+lh2K+kN4zr9fGb+8LHDOjPGSbjPL8DNdDifp4ct2+wWDd ljeTTVI7xTWXvi9oUMhwynsdmPfeSM09xn0bYt7Sfj/Bc0ymvo3Eb0Jq+zlj V1x3iByTUdhmeG5iBuPbrTyafRllL6nc/eNLL8f4HlCqYd74ku4Z/Iybktpj VtNqIcP8ZO12utjeTU6ng26Uf0tvK/Z/1imPSRJzzN/tN2r7mSN703W63tSN viUAWFTLOcdo39fuc4dRG49UP+ZK7THS/rKM9+f3pleoHxX5x4R8fpcN9xf9 8eS6vbJfP174ta8vUCZ1F/X59Of40nnR/F5H+P0EyzHm1+Wl+rwUfX4IkWNO 9xhcK389gxd0PwdSlko9QqOm1yX3pS2ZHDMnzE1atYpWadpQfvu5jfrDbAOZ 7TqoKpt+ymCe00wPbRKP8ZsTUi4Zk+Zqr6ai672YxwQAS8KyzjEm9aVcxxrV f+Y5JjDepJhsNpsG916OON4iV9UfZSTU+UV/PGXdblD/mtwv7XH199pHLnsz 1VaUUTF3/Ly8HMrJzqbMTLn/ZWFyjHG50DnGJGsYlAuVIcPed5isGh8zPzdB XTX75LaTdwtoJIxyb6Zu0WqxzGfVplmEdVVI+5baZGYfSPO8xTX4klM2UVFl PTlGmQW/RgCAcKzsHGNURwXPMaFF0B4TRo6J7HgW5BjfUzpmMKeLl5mdmbg5 Zk9DkDnVPuN2oShY/Xwl9skFKW8csocx/18aH5NE+4KucTctrSGzr1PR/zY/ QvXFufS+0biav/mSbo9q10AAALAWcoz28yA5hh+LwrLk8/mCCL2uatg5JuLj LXSOYanV9rk0JvbMrW5ye7z+Y4rjisRnBiRMjnFUSufgMTkH/5zuJd4eI5un qhShj+hcGH8fFXOOguceeX62KscozDCjZG+/Soe3fabIM5/QQ4zzBYBFhByj /VyfY8RxFvyYiqEFuKZQ5xf98RY4x7BPpec9Xh0wfr7Awo6PsT7HvBpukHKZ 0Rhwv+l70pyleOaYJ1WB8SjZF4M952ie6jf9iTD3Opw1fefCzD0jtH1V+M8m YEdvyfkIzzIAgEW05HOMye/7fouUY/hxn4eF+jz/qvG8an4OcqnNRkVnWkOu ARu6Po/2eAucY8RxwWZ9Zdzn0lztBMkx/Jr7Z7PFeU43DL4rH123yfPT45lj ek//szDW9oB+bUDBm6lW6RkDZu0mWpPNW+T52iZtJ9Ic66QP6N5MYJ2Z+sJ0 4p+HfXXIqM1xLmT7DQCAFZZ6jpl2lAt9LIf166wsWo6R5yTzSm45VfO1ve6H 0lolujXcDIRTn0d3vIXuVxLXzOXXOG4gRrEOj8/9WDVuJnFyjHpederOs/R4 bJpYliXP2GPdGr/xzDHs2Hmpv+atjBM0qFkjZnaoTbH+y5fUo8gks70nhXEz q1VzpwMmyCasn5f0483UphrTMk/diudgv7P7jvC+nFP4McU9M6yqTK9Uhl9f L7JnVgIAxGKp55hXk9+r6pXs7GwquSm0s4v1lGasg7K+NBoDESrHnBdyjLoN wqv6PT0tM5dsxTZp3ddAP9CukHOVwjm/6I8XYlwHd79yIxznOymtgxdY94Wf p5STky29l5OXFVWOMbvuoDlGVS6MMSzi9RocT15zTy+j6AbduZQf9xzDe1K7 QTWWdm3mdioszKf1ye+q5g2VOWZV5br2/KX0udEzJN9MXpPnLfFzt1PWU0pK Jq1brRi3q1nvbra3Qj3fO2UTbdv2tWrM7zu7sZ4vACyupZ5jeMMdlZSjWBt/ g1hnivXbTvUc2peDV4TftRsM6+vB2kBbR5XZvGt+rophJvFRd91R1Zr3Yv1e WHadRsPIMOGcX/TH81F9QWBcbs2A8foxfD+QWY4R14/Rrqujvf+BXLWLarom 6cVw4Fp21KjLOC8F8kiNYh2bcK7bqJzx9xziWoP8fIimB9qpzFbAZcMcLh/n UF5BMV3tGPR/dr/0qyWRY3hjnRdo/Xs/MVx397cZR+ihW9/+MaVYJ6bUZDzv vPsu7Un5meF+N3JZzmg9O9/QLdquylCCv1jnX1MmvGc8AQAsnETIMSL//Bx2 CbRZsz7yeBj/s7cZxhPzM5GX3PEMseT1eMjr9XDnkuDjOLn76fUGuwavNIZm KeQY0Yx7lBwOu/+57HaHc8GeMT3HjHD7ddLQkJP7c4iYudBl5udmiHG7yc1j ZuL/nQLAipVIOQYgdizdFtpx0kvuGm4z1SU+izvInKYwWT/vGgBgZUOOgZVm svWg1D+2tfg8dfW7iPF4yO16THVle6TP0otCj9kOBTkGAMBayDGw8rDUXZ1v Os6Xl1VUbzrXORLIMQAA1kKOgZXKxzyllroqKi0upjL/s6O4P6uv++dhL9Qx kGMAAKyFHANgHeQYAABrIccAWAc5BgDAWsgxANZBjgEAsBZyDIB1kGMAAKyF HANgHeQYAABrIccAWAc5BgDAWsgxANZBjgEAsBZyDIB1kGMAAKyFHANgHeQY AABrIccAWAc5BgDAWsgxANZBjgEAsBZyDIB1kGMAAKyFHANgHeQYAABrIccA WAc5BgDAWsgxANZBjgEAsBZyDIB1kGMAAKyFHANgHeQYAABrIccAWAc5BgDA WsgxANZBjgEAsBZyDIB1kGMAAKyFHLMYWPK43eRmvEvgXKLHej00NuYmL4v7 Ei7kGAAAayHHLALvI8pOS6PUjHPkife5xMBx9veUxl3HiZ5p3JcwLViOmRuh 2uJsSl6zhtYINhZW0eDMm5j2O9Z5gb5OWSvtc83aTXSu3WV5WVfnVdqT+blU NiXzazpV100zum2nqavuItXU1IRWWUNtQ7NhHf9J00WqrKzk3KCJ+fj/nABA 9JBjFsHLR7SLr6+3XiDvohzTS/0dN+lWS/eC5gNn9XZ/jjm9UDlm0e/L4luI HMO6rtH7SUmUZOgDuuj0RbHfObqx529N9plEP/umgeYsKTtCx1P+1LRsUlIa tbkV2Wy2Nci2en+6+07Ia5/tOqgos5raYsyCABBfyDGLYLHr6xcP/O0caWkb 6aF34f6NRo6JXKw55s1UqyLDfEIXO100MzdHo/YrlKrIMrfdkX3PHbZfSXX5 x7sv0RAzQ3MzI1Rf+Kn0/ju7Wxa47DzVb/oTaZv07+ppyM3QDDNKzZXf0tvi 9fx4Bw1KbSTT1FFzjsr9bSfGair3S/v86Fhf8Gv3PVDct8A9vYccA5DQkGMW wWLX174+//HS0nLpsQ85Jp5izTE3pHo/TV/fcnXyerE+Tm+g+TD3+WbyspQZ Pjp2X3/Op38n1fMXRtkFK8u6KqTP9rX9oCvre1Ih7fvbtudh3yO292SYmWSO atf/KLDtb9dT6upABkSOAUhsyDGLQKyvs+T6mhkbIHtXF3XZ7dQ/MEa+kPvx kdvVHyjTZaeefhcxXla3ndfjIWb4e8oU2mNuuqbIwzDEeMzG0vporL+H22dg v/y5mI3jlXPMC/9/+zxu6ufOP3A+A+Q2OJ+w7kuQHOPjflfv8Z9bF9l7esg1 xoTer89Drn57oIy9hwa4MmyIMh63i9u2S7oWo3sbjZhyDJdT1kn1vnG97usu kdpkwq2Pu4//Q6DMuweIMdxmmk6sCRz310X3F6zsbNfeQNnfnDAYBxPQkR9o 6/m7/fqMZOwZHXlPPN6joNuO3dgq9SXd5v5OnE5GjgFYDpBjFoFYX+9sIIZ5 TIezU/15QCV1LzW7XhqWH+6oFPqJ9ApreuU6+sUDIb8YydT1MU3ar1CuybYl 15y68xBzTE3PMLWW7TA8Tsm1ocjvi1GOYSeovniL4TFStx6jx8wrg32y1F13 yPj6M/j7+0JXhnU/pMM5KYZldp5sjbmdKJYcM9WRJ9S7m2nQdLsR2r4qUI/n No6Hsd8Jsgn1/hcXh023mxTr/LcKaGRBynI5xnGBUtasoX2N5mW7D/+jv+xP w8wxUx175baYuSB5ZFbun8u6yt+nOTq8BjkGYDlAjlkEQn3N141izsjIO0wV FdVUUVaoyg83NVlmsuWI/HnmLiqrrqPGumqy5chZaP+1kcD2XN1/vayMSm1b 5bq4+BSVlZVSadl1YhTtLMO3DyqOm0tltXVUV3uG8hQZa2eV+vdbMccoz6eC K9dYe1KVh452hdknYJZjfE/pcJp8Hlttp6iusZGqS/eozrndrc4yzkvy+WUV HKPGWy2ac9tI7YyizpL63wKflVRfp5aWRipT3L/0kgcxffex5JguYRzKn2/8 Puh2YhtGWHX/7F2hPl9NV0bN25zeTN2i1UI7jzQONpayYZHbcsLLZM+kXPVR 0LaYOapKEfrfPqsWxiCLx0KOAUh0yDGLQJFj/G0WtwZVn7PMYzqQGai3+b4n eY7RMzom1OcbTj7Q9I2wdL9CaBPJKFe38b95Gjhe6i7qM+ojmr4nte9kFDZo +gdYctTtl3KVst5X5pidZ+5o+sKe0aW8FKG95HJ47RgmOaa77CspW1zrV4/F 4dtP9gr3RHUcdogOCO+XNGvrwAk6mx04tw1nnkjvDzfuE+55OY1q7tPU/ePS OcQyxiiWHCO2TYTqY+k+/Mvw+2J8d4W+qhD1t0/MLIrtYikbBle92O/zdtCc JH1HUntV8LYYuT9JmauQYwCWC+SYRaDIMVvOGP/e+Gbye6mt5tqY2M7g88+f bmzsoAmjPMLtN1dom1D1GUnHyzWcrzRYt1vIP9/RhOE5P6fzQr1/wj4jvS/m GD53GM3nlq8hlx6HM0/KKMf4+qSccrTduF3n1XiD3H4l3ispxxiPbfa5+6ij pYP63HJ7l5hjtiiyjYy7910d1NHljKlvaSFyTPq54H/PxL6Vd8KYcyxnkS+p Zz7YdyS2dXxAtxltjomibAis67w0xvfTUyHmHPlN0B6xLeZYkLaY2bvSGKNA f5L4GXIMwHKBHLMIpFyRSc2m/6776HpBeqCf6NZIePv1yjnmsUmO0ecJL10S xoPsv/lH832zPvL5fKo2IDHH5F81OT/lPKkoc8wL5zlhvNARGjUt66N6oe3n aPuk8N6o1BeVZTtPA4zxWCOlydaDUptLVcdgGGOtI7cQOWZfZ/B+Ol+vMNb3 8zNB1m0RvyOhXv/ZEZNxuiK5j6fM8TL2skHwc8vFrJH08RnTMcCq765Zbot5 aNoWM0/1mT+S9jtneI7IMQCJDjlmEYi5IqPcpP0jQBzfseWMut5jmSFqaayh stJiKijIo5ycHMrOzFSNFYkmx1T268e9BiPmGNNyQY9rvr1Rjgk1F1u8VxsU 92pQaF8RZWbvouKy89RiHySPz2A/3j6pL0ps38krKKbqxhYacHsW5LtfjH6l J1W/C2u+jp+ibyjo2BX2sTCnW9FnE0tZ0/NRzB1P2kz9Ya2tO0J7/iJ0W4y8 3t1qatStrzMtjfPFOngAiQ05ZhFI9XXwcSNiTlDmmOFbR03nH2XGmGOuDoT+ Xdno/EzXj1nIHLPnRtD2EaN7xZvqb6bSgq2G96yw6r5+n+wEtVaXUE6mfg5Z atYB6nRHdo+0FiLHaOcvm20X1viY2TDHrhhllljKGpkflOZaGa6PY0KaDxWs LYbto03ienvnjOZHzcntMaGyFgAsacgxi0Cs3/m+kiDPWBTrZrGNgR9vIs2/ sZ0lu8tNXr6vh2Wl/UbTr3ReyDHiOjDhWtQckxWiPcYkx0hYr3+9nZbGKtqr mIO1o8Z8XrjXvx5Os3peFD9WOk7jfHuP/3PI9Vb4+jiwDkq47THyeraH7ObP 5/QZrS0XS1mdCaE9JLBdW5jjaJTzzIO3xYjzsTnvraPk5GSNNdLn7/mf8fQ3 9HHQ5ykAwFKFHLMIFON8r7mM1j3hPZfyhThvWZpPs6fBuG0iqhwjjy3ZUWU0 vjWA9TLkdjOqNfEWI8e8HLwg5Ie9QfLDM2n+kXIcsjl5ble4awez7k7pO6uK MO8pxZJj+LGv8rptJvdCmhuURGVhPWdpXlrTNti4YLGNR56nHGtZpWk6nSo/ 36gxjLlJorH6DWGMi+FyTLcix4Trz4+GNTYHAJYW5JhFIOWNNMow6S+Z7i6X xpw2C2u8SWNAThrXg9K8I21u8JrMYxJI41tTd5nkjQlpvrfRfCUrc4xyvO4e k7YT+V5lUrOwhoxvrIlseXlUeLLVcO3eV0I+Ss0Sn63to9aKQsrLs1HzmFG2 9En9b7E8hyG25xJMSONAzJ511FUoZIYf71CtORfMlDRG9gODcSOv1WvGadZx iaVswBzVfv3X0vzqs5E84/LNoNRXFPI5StxxGH4daxMzM/3CfKfVdHVoimb4 9+bmo/6eASB+kGMWgWb9mK0l6jXpJu0XpbEuqXuapHr4hVOur2t6JhX79JGj UTluRpsb5HnTRZq1avzYp9Lc5rSMA/RQOQbEN0G3S7cY9qksTo5R5jPu/K86 VLlvvKtSulcpRW3S+1I7DqekRbM+j6ePjgl9SymFbcL9lXMKv37MU9VzCFga lMYlZdJNt1kbWmixPl9Jbn9IovRT6vEvvbXyZ5/q5mZPU5XQdvJWxiV1u4gi D/BzqO8p23pmehRjVr7Uj7uNpezreWpWPGPyUGfgZ3p+fl4v6L1IC9oWEx7M VwJYLpBjFoHQHpOavYsKpHV4M6nAZqO8nAzFWIwD1Kes/9lROqUYf5qZnUPZ /rlK4nq6ucJ6dtp2F5ZabZ/L+83Mpuytp2hIkZ1eDjeonmGQnVdABXk5qnGu +VfV7SEhc0yIdiDT+5KlXY/GS9dt6arz5+do5Sif55DxHQ35gpXJpeLSUipW jfnNpU7F8wxeDDSorjen4DCVlharxvzy6w/G8t3HmmP4doX67X8t1f0/SV5P 27Zto/XJ70rv6XIKb7ZVWFM30OagHW/Luq4oPn+bMr/eRtu+zlS9Z9ZWEm3Z 2e4/qPtxViWp/1tF02+kGLcbui0mHNN4LgHAMoEcswiEdVVSd/J9Ss/petke Vf3pb6MpvkSjRnODfUN03qaff7OT236C5eruvM+Nx5LoyumzBb827rG8DN2+ M3MO0M3+Sd25iP1cpvOu2aeBecxBx7YY3BfDeVz8usJHDZ8XVVjdargOH59l 7teWGD6Lir9fTz36dhXfWCd3D7L085syd/nXlAn1fMlQYs8xvHnq+C7LsL7/ rKjFZAzKMzoujP/l15UxGvfBjrbSpvcMMsRPvqTGoeD9PdGUlZ9pGQ51m8us VPZL6lmQ+UXTwvjoUM/IBoClDjkmTrgM4vF4yethyBPGs5VZn7i9h7xGecf0 OMJ6dkHmSfm83sAzsRn+XCIYr7AofNx1c9fMnSOjGXdsjg0891u4pnDK+O+v OH7C9NngkVuYHBMwPzNC9s5Ocg45uT/tNMosxDO552nUaadOu5OcDjvZnaOG fToLXxYAYGEgxwBYZyFzDAAA6CHHAFgHOQYAwFrIMQDWQY4BALAWcgyAdZBj AACshRwDYB3kGAAAayHHAFgHOQYAwFrIMQDWQY4BALAWcgyAdZBjAACshRwD YB3kGAAAayHHAFgHOQYAwFrIMQDWQY4BALAWcgyAdZBjAACshRwDYB3kGAAA ayHHAFgHOQYAwFrIMQDWQY4BALAWcgyAdZBjAACshRwDYB3kGAAAayHHAFgH OQYAwFrIMQDWQY4BALAWcgyAdZBjAACshRwDYB3kGAAAayHHAFgHOQYAwFrI MQDWQY4BALAWcgyAdZBjAACshRwDC4clxj1Gbo837O09bje5mXC3TzzIMQAA 1kKOgQXjfUTZaWmUmnGOPFZsn4AWLMfMjVBtcTYlr1lDawQbC6tocOZNTPsd 67xAX6eslfa5Zu0mOtfusrysq/Mq7cn8XCqbkvk1narrphndttPUVXeRampq Qqusobah2bCO/6TpIlVWVnJu0MR8/H9OACB6yDGwYF4+ol18Ltl6gbxWbJ+A FiLHsK5r9H5SEiUZ+oAuOn1R7HeObuz5W5N9JtHPvmmgOUvKjtDxlD81LZuU lEZtbkU2m20Nsq3en+6+E/LaZ7sOKsqsprYYsyAAxBdyDCwY5BidWHPMm6lW RYb5hC52umhmbo5G7VcoVZFlbrsjq4s7bL+S6vKPd1+iIWaG5mZGqL7wU+n9 d3a3LHDZearf9CfSNunf1dOQm6EZZpSaK7+lt8Xr+fEOGpTaSKapo+Yclfvb TozVVO6X9vnRsb7g1+57oLhvgXt6DzkGIKEhx8CCQY7RiTXH3JDq/TR9fcvV yevF+ji9gebD3OebyctSZvjo2H39OZ/+nVTPXxhlF6ws66qQPtvX9oOurO9J hbTvb9ueh32P2N6TYWaSOapd/6PAtr9dT6mrAxkQOQYgsSHHWMlHHsZNnv+/ vTcBjuo80/0p31TqP1WpGldlJjez3YwzjuPESSbxzSRjO46dO97iJI4TZyVx EtuIZGKQ7WExRmxmB8sIGcQqFgFiEQYBAiR2schIAiSQQAK0IGEJtLTWBrXE 4vffb5+1u093n16O1N/p56n6lU3rbH2e/vo8/a3d0vd5d2stVZSVUmlpKVU1 9vht73T/Lq0olf5eVlFBdY2tgY/tclKr+7esw+kKuI2r20HNrQ5yBrmmW04H 1VWVSecsq6DLzY7Q78u9z+UKeZ+KKvd1yvu4c8nkGOeYsO6J7vq83pN7H1eI fRzNde5t+TxlVFF1mVq7A9/XcIgqx7hzyu/U577xc91ZvlytkzH7PC5f9Qtp n8cXUqvhNh20+gXpvM8vPhWzfbtK50v7/ni1QT8YiaI5Ul3Pj973z0jGtNDS J5TznQ26beP+FLUt6XBrK60fjhwDgB1AjrGOnupNNNL9nE7JPkbHst/1/L/C iOW671xXE+3JmOj1d4WklJV0rrXf/9iV6zx/H7Um0DOym7aOG+HZZn1Fj981 TdxyluqL1huec+yCPQGeUbc8+yQb7DN6wX7qvnEhdvUxEdwTHv9UvnuR4T4j R8+nwjr/7OhqPkNLJo0w3Gf6mmNR1xNFk2PaimbIz913qCbgdldo2tel5/jk gqsmjttEafJz//Vt9QG3u6Y8878yj67EZF93jqn8kEa88AKlFgTet3zJLz37 Pmoyx7QVzdfqYnqD5JEurX1ubB7fp15a8gJyDAB2ADnGOpTMoJFM8zJW0Iq0 ebShSH7mOC/RkpFJ6jYpaVm0u6CAclbM1e03mU409xsee+KGwDlmxyQlx3QE vaYFa7dSQUEuZcwYreWsBcf96jBqClK1/ZJm0trsbMrOXkszk6XrHzdjhifj RJ1jIrwn1TumaVls3koqOHSUCnLXeOqIpNfH04lW3TPLKeUu5W/Lc/bR0aMF tDYtRT3OqOWno/oMRJNjSuV+KA+OPxB0O6UOw9Szv+uk/Dx/knY1BK5zut12 iJ6U63nUfrDR7GsKrS7HXCZrUXPVr4PWxfTSlhFy+9urOXIfZOVcyDEAiA5y jHXoM0NSShZd6vb/vixf+z/qczS/qsPrb1xXMF9+niel7PR61scixySNXUkX HN7XVL37feNnfkexZ4y0VPey16e+pp32ZYzRvdfockxE98RVSwvl15cX+j4D m2ijXDc1ZsNF9fV6OZcljV1HDS7va2s7tUq9hnPOyJ9z0eQYpW4iVBtL+ZJn zbfFOE/KbVUhnt9OJbPototmXxPU7VHafb4RNCepHqn1VcHrYrT2JH2uQo4B wC4gx1iHlhkmU4nD4LvSeUF9Ji87Ydz/of/qXrXe5GBjv9+xI88x3sfTaKKV cv3KhjJtv5rds+X2mUxqMjxfC2WNk/PF2ChyTKT3RM0xkw1zh7P5AhUdLaIL zTfU15QcM1GXbTScVFVaREWl1VG1LcUix4zaFLycKW0rj5kYc6xlkTepoi/Y 81up63iRDrf65pgI9g2Bq26r2sf3lawQY47kz+lcpS5mZZC6mK6Tah8jqT1J +RtyDAB2ATnGOpTM4FuX4vv3kUlLqSHgcZy0Z8YI+bl+zW/fSHNM4KzRrZ5P 20871vsHPw74fq8d+yDqHBP5PWlQ26LGpm2ly603Qp5fuV6uc9lSVOPTHzo2 xCLHpJYEH7vjPC/39X1tQ5B5W2SULPK9pQH7QElobTxrK29Ev28QeGy5kjWG /WZDwD7AXt4VanUxZwLWxfTRnuT71eP2Gl4jcgwAooMcYx2hMoOWc4I/95V+ H2N0mcW6HOM+X860gDlmc5V/X1mFG/W7om5XiuaeePXfcZM8biZlrN1KR8tq yOE0OE73BbUtSqnfmTEvg3IKjpobt2WCwWhXurjlr6bG63jQtQ0F7bviOieP 6da12USzb8Dr0Y0dH/YOVZmaW/cKzf1a6LoYbb67J6nAb36dDrWfL+bBA0Bs kGOsw3SOmbs/aF2AkismxkGOyasL8vvaGf14pWjuCdNWVUgr5qV45RmFBVtO +R/T1UTHcpbTpOQkv+2Txi6kkubQ9QnBiEWO8R2/HGg7U/1jukz2XTHKLNHs a0RfjTrWynB+nACo46GC1cW4LtAEZb69TUbjo3q1+phQWQsAENcgx1iH6RwT oh0maI7ZYtS3g4ltjtk6yX8Mty83aj6MWbtSJPfEC1c3NddV0dGCLTR/nJZR 3t1eG/CY3Y5mqior9B4XlTSTLgxRP9/zq/4Ycr4Vfh5L86CYrY/R5rNdVBZ4 fU6n0dxy0ezrR5NcHyJtd9xkPxr9OPPgdTHKeGw3T/yOhg8f7sML6t+f8Kzx 9H36TdD1FAAA8QpyjHWEeiYrz/2RSfODPCtb1LE2q8s6/Y8dsN6iXd0vJvUx cn+Ud7cHyk23qF7uCxxNjonmngTGRafk+XvM1hW5mkvUMdlbgmS3UESTY7jv qzZvW4B7oY4NGkZrTa2z1KfOaRusX7BSx6ONU452Xz0dtD5JW9+owMTYJIXG PWNM9Itx55hyXY4xy4PLTPXNAQDEF8gx1hE6M2h9U+cGqCfoKF+n9t0o1M2X osyDNzJpIdUannubWqcQfY65RVcPfaDWT5wzGD9+y3VJ7WsS1XilCO+Js/EI pc2YQQvWHDOcu7dfrStS1tZ20rHsBTRjRhoVGo7bchrWZ4VLdOsSNKn9QAKt dVS6QM4MX33Xa865YLSpfWRfNOg3cst7zjifeVyi2Veil3LffkQdX70xnDUu b9eobUUh11Fyn6e1tTUgnZ1V8ninJymvto06+bXevoh9BgAMHcgx1mEmM6jj md0szqv0qlu5WrpZnTt3xOLj3vv2nFbndxu7eD+16uY/aavaq5v7LTY5xmvO uNFL6Iyu34ir9Ryt1LXdRDt/TCT3RK3HcbP8aI3XeVyOC+r1afP7aTmF54+5 5LUOgYtqDi3TxnY3G+Ucc0S7vpJW/zCMRmV59385n6v97RW/sdkdtEWuO/nK 6B3e9SK6PMBjqIv1dT2dFbo+K2/697uNZt9bfVSoW2NyUYk01qyvr8+foPdi ZNC6GHNgvBIAdgE5xjr0mcERcLtu2pc2SuuPkTyOJk2aRJN0uYDnbKk1GG9T uVWbv9YzV3BaGs0Yl+zXXzVQjgl0TYY5xk1HxTav446bMY/SdH1qUzIypPWV gr5fHcp6TH7bR3JPfPeZTBkrVlCGV5/fyVSiW8+g5/Jer/czad4SWrEiw6vP 75g1Qzefr0Qv7Zn2iPrsf2j4GzR16lR6Y/jj6mt+OYXpOibPqSvVOfj2t3XV 7dL9/RuU/PZUmvp2stdrgepKIt23qzzdux3n68O8/+2FT7uRrt9u6LoYM3Rg XQIAbAJyjHXcqJHHIU/fG6J+wkWVu5cZrlu0IOdYkEwg7ee7T/KkhXSirpEO y3Psbr/cE9Y1KWOatxuMse6pO0ILx/mO7RlPa/KrydV/yTOHXdJ04/ly/FDH NxltH8k96aZTucvVeYf1TM/YQZcc/vUqzsYSWjljrN/2I5NneuaUCbW+ZCii zzFMHxVljjV83r+6+GiAPigttEru/8vzyhj1+3A1HKMJTxhkiIfepILa4O09 keyrrWlpBu86ly513zepIibjizrk/tGh1sgGAMQ7yDHxhJMcDgd1d3d71rLu dpncz8VrWEvt/g5HGP0NoqDbfZ0O93Xy9Ub7rI/9PXF5rk/pC2FmH5ezW72H rY7AY3HCJTY5RqKv8wqVlZRQdW21+79l1NAaizW5+6ihuoxKyqqpurKMyqob DNt0Yr8vAADEBuQYAKwjljkGAACAP8gxAFgHcgwAAFgLcgwA1oEcAwAA1oIc A4B1IMcAAIC1IMcAYB3IMQAAYC3IMQBYB3IMAABYC3IMANaBHAMAANaCHAOA dSDHAACAtSDHAGAdyDEAAGAtyDEAWAdyDAAAWAtyDADWgRwDAADWghwDgHUg xwAAgLUgxwBgHcgxAABgLcgxAFgHcgwAAFgLcgwA1oEcAwAA1oIcA4B1IMcA AIC1IMcAYB3IMQAAYC3IMQBYB3IMAABYC3IMANaBHAMAANaCHAOAdSDHAACA tSDHAGAdyDEAAGAtyDEAWAdyDAAAWAtyDADWgRwDAADWghwDgHUgxwAAgLUg xwTG1e2gxsZm6nb5vO5opsuXG/1eD42LWpsbqdnRPTjXH/F1DhYucjQ3U3Pr 4NyPoQA5BgAArAU5JjCVG9+ikSNH0uqKDu11Vy0tHJnkeX3UmtPhHbP7LI1z 75c0ehM5rL7+aK5zsBjM+zFExCzH9F6h3IxxNPyFF+gFmfELtlBN5+2ojttY 8iG9PeK36jFf+O0E2nSiLqJjXTyyjTZv3uxmPzX1hbl/ZwVt9+y7mQrKrg3u uQEAQoMcE5jqnGmeHLBen2NunKXJ7tf49aS5R8I7pnvfmbxfyofUHYPrczZf oEMFh6isrsPwXBFf52AR4/sRj8Qix7jq8umnw4bRMENepG3VzgiO20v75/4w wDGH0fem7KXeMI7XVfqBbv8n6XhY+aqFVr+gnfuB2R+F9V6iOzcAQHSQYwJj mGPcNJadoEOHjtKF5hvhHTPGz22lvmjUmrOGf4/4OgcL5JiQ3G47psswv6dt JXXU2dtLDWW7KEmXZQ43h/fsLkp7Tn32/2b2Dqpt7aTeziu0Z8Er6uuPzT5q 7njO07prka6zOIwscX79H70y1I/eP2X+vUR5bgCA+CDHBCZQjomYGD+3leub uEXQ/hfIMSHZP+GL8vN5pP/z2f0Mf0N5fo/aS30mj3n72k76hrzfr1f6Z4bz 6/+q5oIPG1whjtdLuW/cL23/kzco6UkpV5nNEq6L2fK5vkHJb78WZo6J7twA AHsgXI5xdVNrazO1OoLVpbvI4dnGqP+ok5rrqqistJRKS8uooqqOWruNv6sD 5Rju/9vc3ErOQOd3OuhyRZn7+KVUVlFFdY0O6XW5rSfwc9vktbnvgaO7lY5l vC7Vxyw+4t7O4b4vrV59ekNep/t8jVUVnussLZPP5wy8Ld9Th3I97vdYVyW/ x7IKutzsCN9LEznG2dpAFZ77wfeywn0vW0Mf1/fa3Pu4QuzjaK5zb6vc98sB PxPhElWOceeU38l5IvV4u/H9KV+u1smYfX6Xr/qFtM/jC6nVcJsOtZ3n+cXB M0Xj/hS1Peew+/O3fng413KFpn1dqfv5iLourgkrx0R3bgCAXRAtx/RUrvM8 u0cmLaWmANvcqPlQ3mYmXXBq32n1RZs9/UpHGrBg+3m/Z12gHKO05xjV09QX radkg+OPXrCfum9cCPjcDufalPMbMWrNeVPXea1sl9p/xpfFeZX+9716k1z3 c9bzHo32G7tgT4DnYgCC5RhXE+3JmGh4nqSUlXSutd/gmC4q373I+N6Mnk+F dT1++7iaz9CSSSMM95m+5ljU9UTR5Ji2ohnyc/odqgm4nZYFJhdcNXHcJkp7 Qtr+9W31Abe7pmSEr8yjK4GO1aW1eY3N43P30pIXzGeJUrVtS3p/zvJ08zkm ynMDAOyDaDnmllPKAvycybts3O/j1Nr/kespjquvXTu6VHtGJc+ktTm7qWB3 DqVNSlJffz//itdxAuWYQK/XFKRq53BnqLXZ2ZSdvZZmJkvnGDdjhifj+D63 w722trJ8WrF2hZZDPOdaSytWrKD8iraQ11l/+APd83oyrc2Vzjd/nHa+lDWn vbKTkmM0kmnB2q1UUJBLGTNGq6+PWHA8ZN2HSqAc47xES0bqriUti3YXFFDO irle132i2TvLVO+YpmWqeSup4NBRKshdo8tr4+lEq+4Zp/ss8d+W5+yjo0cL aG1aipYLl0c31iuaHKM85x8cfyDodkVzpO0eNfX8Pyk//5+kXUHajG63HaIn 5Xoe436zvbRlhNym9WqO3CdYqccJnSWcct0Ls7ZSKsddpnNMdOcGANgL4XKM m49WSDlljFH/Vt14481Vyu/vFlopvzbG5/nMv+FPZb8r/2Zf51WfEFaO6ShW 61NGL9jrUy/RTvsyxujqE/TP7ciujanJVfrHXDS8T6Guc+zi/T7jnV1UnjtH vU7t/nnnmKSxK+mCw/tZUb37feOsEIwAOaZczqF8rPwqnza95jM0X75fSSk7 tf10vi8v9K2XaKKN46Q6lzEbtHtVL+fOpLHrqMFnjp22U6vUazjnjPy5GE2O KV/yS1PP9fIlz5qvx3CelNuqQjzvnUreMd5Oa9PR5xyzWUKrQ9Jfs9kcE925 AQB2Q8Qco7UbLaRan+dPT+Vm+W+ZunYnJ1UVHaSCgiJqMpoTTh2jPJnOdGvf geHkmJrds+W8kRmgvauFsuT6jqSx+ud2ZNemv46JG4yfk8Gv0z8XSbjocNrr ct3KETVXaTkmmQ42GrXpNNFKud5pQ5nJftFGOcZ5Qc0py04Y9wnpv7rX/1rU HDPZMHfwGPWio0VeY7eUHDNxg1EOdPtSWkRFpdVRtS3FIseM2hS8nLUVzVf7 mIQ8rppj3qSKvmDP+xa5/elFOuybS7tOqv12pDYd5W/msoTyvoZ99V2vNitT OSbKcwMA7IeIOUb/zNxS4d3n4SO572ugOgpDurWscC6iHNNNO+Q+Fu8f/Djg ea4d+8Agx0R2bfrrMJ9jzF3njZpdfplMyTGBr72b9swYYXi/AmKQY9S8lLSU GgLu61TPteyEMmdag9oWNTZtK11uDT3WXPGD61y2FNUE6Q8dObHIMaklxnlO wXle7uv72obQc74oOeZ7S0P0ZdL6+irtPhJ9tCdZHiP0G9/zhc4Srrqt6lip FZXeHoXOMdGdGwBgT8TMMVqbyqjFJ7XX1d/yyVTY7F9n4GqtpaMF22ntigya N28GTZo0icYlJ3v1uYg2x+jbYny5Ub/LoF0psmvTX0ckOcY3/3mh9hvR6oBC 55gIxqkHyTGhxmIrfWHG6N67V/8kN8njZlLG2q10tKyGHEbjsLovqG1RSv3O jHkZlFNwNLLxVwYMRrvSxS1/lccWGc8j5O2t1q4UdL441zl5TPfvqbhX206b c+5JKvCbs6ZD7WtrfOwW+e/D6LEp/nPThMox0Z0bAGBXRM0xt9qOS+OCkubT Jbk9pqN8lX+/CZn6Q8t8+qlqz67kGOaYvLog9QBO4/FKkVyb/joiyTFBr1PO F/pzDnqOmbs/aP1IoPfeVlVIK+alGN7PBVtO+R/T1UTHcpbTpOQkv+2Txi6k kijnEIxFjgk19tls3vHQFbzfi/ZZNcg7rgs0Qa5LGbXJaKxTr1Yn0ut/7Lrc MXIOeZOqDM7pPJ8eOI9FeW4AgH0RNsfwM1luW1hd1kn6fh2LfPp53r52QH02 jU3bSGV1zdTtdJLLJY/XuBF9u9LWSUqbSpD6GLlfjz4LRHpt+usIJ8eYuU59 jhmy+pgQbW+h3jvPscNz8Rwt2OI1Duvd7bUBj9ntaKaqskLvcVE+Y/fDJZoc c36VPM/tj1dTZ8DteuV5U8zWx2jz3y4qC7w+p/O8Mp5Imx+3q3S+Nm/uE7+j 4cOH+/CC+vcnPOs1fZ9+o65v0EFLn9Dm3R0+wnff4fTTr2trC7zgPtYT3/8d 5dU6Y3BuAICdETfH3KJrHy2V+6OepFv956Vnr/u54/u8V8elzN1r/Bs/BjlG yVTvbg/cL6de7mOrf0ZHem366wgnx+wxcZ1qvdZYbf3GwcoxWh/u+UHyQ4s6 /kjKsKHOpY37Mjt3sKu5RB2THbQNLgTR5BjuS6LN8xbgXqjjiobRWlPrLPWp c+AG6xes9sVVxzVzu48uS5jlwWVyBvPOMWZJLe6OwbkBAHZG5Byj9uNwP/MK CpbL/WWO+22n9qVYY/w8UcfwRJxjbtHVQx+ov99984YH1yW1L4Y+C0R6bZ59 t74TZo7R9W0NmBPa1YzAfY98xytZnWP0/XXnBqg76Shfp7a7Kf2gnI1HKG3G DFqw5pjh/DX9al2Yks2cdCx7Ac2YkUaFhuOvnGobXDTrUkS3LkETzf2aMt+t 8VpHpQuMx/4Eo61QmV/vRYN+Jre855jzmluv1zNndCA6O6to7hNS7sqrbaNO fq23T92/rzPwvq2dvVQnj6f+3pQD1Nrb6X69U7fWQnTnBgDYF6FzzC0en6TN yxLot3NPtfbc215xTfc3J1UW6PumRJ5jvOZUG72Ezuj6Vbhaz9FKXduGdztK ZNfGdChzG7vPd8kgOxlepztPqfOvjF1C5/TjerobaOu8UX4ZQbrOwcox+uwm zS2sr6e6WrpZ7TM0QpdZ1XocN8uP1nidx+W4oN5/bZ4+Lafw/DGXvNYhcFGN 2mcpmQ4a9Bk3S7TrKzXuGaPWL4zK8u7/cj5X+9srfmOzO2iLXO/yldE7vNtX bteofU24r0qxvq6ns0Kd28XTj6UvnOuNbsxQWPP5xvjcAABxET3H3KjepuvL EGCsrquBsnT9OJPHTaJxnvFAyhy6k+W54SKfP4bpqNBdy0iev3cepen6nKZk ZEjrK7mzgCPKa2P6dX1rPOcbN46WH6wPeZ09l/d6rZ3A5+PxUfrX9Mfx7KPL MY4AXkSSY/zuh4du2pc2SntvyeM81zdJlwV5THitM9g+kyljxQrK8OrzO5lK dOsZ8H3Q379J85bQihUZXn1+eW7CaD6f0eYYrofYM+0RNa88NPwNmjp1Kr0x /HH1Nb+cwnQdk+fjleoofMfwuOp26f7OazROpalvJ3u9ttFUO5WejqjWBjA/ n2/szw0AEBfRc4x+LpnpwdZ9dtbS1jT/cSzTM3ZQk8v9DJzxml9bi9Lm4zuW Wnl9u8EY6566I7RwnO/Yl/G0Jr+aXP1SXUjSdJ/xVBFcmwKvy+T13NW1MQW7 Tp4Xd6VuPQG1rmjSQiq87J9DlDllkqbvDVwfE+R8xp4o47f8x5dxnUjl7mWG a1UtyDkWIEt106nc5YbrVPG9vOTwr1dxNpa478NYv+15fQieU8b0GgsBiD7H MH1UlDnWsA/Iq4uPBujL2kKr5P6/PK+MUT8RV8MxmmDUZ+WhN6mgNtwMw3TI fY5/H1l9jDwPTqjxWVacGwAgLuLnmPBwObvJ4eimboeDugOu7Rw9fHxHN5/L YfpZGM21OZ1OcrrCX6PZ2e2Qz9kaYH3wocbpuYfd7nvZ2uy9nndgXJ57qPSd MLOP594r/S1ieB9ik2Mk+jqvUFlJCVXXVrv/W0YNrbFYk7uPGqrLqKSsmqor y6isukHXJwUAAOKfRMsxAAwmscwxAAAA/EGOAcA6kGMAAMBakGMAsA7kGAAA sBbkGACsAzkGAACsBTkGAOtAjgEAAGtBjgHAOpBjAADAWpBjALAO5BgAALAW 5BgArAM5BgAArAU5BgDrQI4BAABrQY4BwDqQYwAAwFqQYwCwDuQYAACwFuQY AKwDOQYAAKwFOQYA60COAQAAa0GOAcA6kGMAAMBakGMAsA7kGAAAsBbkGACs AzkGAACsBTkGAOtAjgEAAGtBjgEAAACAqCDHAAAAAEBUkGMAAAAAICrIMQAA AAAQFeQYAAAAAIgKcgwAAAAARAU5BgAAAACighwDAAAAAFGJ9xwzbdo0AAAA AAiKIuQYAAAAAIgGcoz3fYDEEXwTW/BPTME3MWVH35BjkGNEF3wTW/BPTME3 MWVH35BjkGOC6w71dnWRw+EgR1ev+1+BNdDbRS0tLW4cNBD0kH3k8GzXQl19 QY5ocjv4Fr163f7yfXZ09QXdzqzHpj8LBP+CaaCvl7rc3nQFKntmyxKZ99js dvDNWPrPflBLYvw9yDLjnR19Q45BjjHWAFXmraLZvm2QszOpuL7XcFvvtsql dLrF/wnWVXOEUn2OmX2iPuLtWPAthAauUnaq5EmN79db31XKTfe+z7OzDpLD 7+vSrMfmPwuK4J+/WqoLKTN1ltd9zKvxLnemy4hZj01/FiTBNx/11lNeZqrP Z3825RTW+GXQmH8PhuGdHX1DjkGOMVYf5adK9yR1aRbl5uXS0tlKGUmnat1X 6tWDS+XXUykn/yDlqmU53eu5eaelWL3PS7Pz6GBelvrvnHJH2Nspgm/B1Ev5 6dMM/XB/S1Ke7PHU9CzKP5ineZx5wqsexazHZrfTC/55q7k4W3sWuX3Jzc1x +zLbK8eYLyNmPTb/WVAE3/TSyllqZi6V19RT5YlcNYNE8v0We48l2dE35Bjk GGP10pGcXKp2DHi9dnDpbJ/fhi2UPW2q53fHiWZl2ztUnCVtl1Xcou5dnZcu lcn8WvW1rspc6d6nH6S+MLdTBN8C6Q6V5+h/H3rXxww0F8p1bLmkfisO1FOm nEMq1cemWY/Nfxb0gn869Vaqz75A9Y8ss2XErMfmPwua4JtOfdWUzjkiNZf0 t6q3Ok/KNjmV6mux/h4M1zs7+oYcgxwTjmpyU+VnUrPn3wPNJ6R7t/SoV+6/ o7yu/h7olet3fMtVF+XM1j9jzW6nCb4Z6+oJ+fdb1kE6nb80YN2Jbx1Xjfz9 qbxu1mPznwVvwT9NiieZhc1BtjJfRsx6bHY7veCbJjVLpOd7/87qKZfa5i38 HgzXOzv6hhyDHBOOqnPT5foYqRD11eZ7/p2e7/Pb0f17YInn90mB9Pukr0b+ vZLnLol63aHy7NlaeTW7nU7wzV+91fnyb7Qc4lqQq4fS/XJMff5SLy8VKZ6m 5tV4/TuUx6Y/Cz6Cf4r65LaJVCq+2kw15cV04sQJOl1eSc1dugQYRhkx67HZ 7fSCbzrduer5jHvqT3JOUHPvXc/LNfk+udSC78FwvbOjb8gxAXKMqztWt9g2 6quXf3NMzaT6AeU1+dnl+z0nl0P198lAjVTOfX+vkL4c9prfTic7lstodMdx Wm6bcP9mU7/rfHNMHxUulfqt+OZCX0/Nemz6s+Aj+CdL+ewHIOtIvfd2IcuI WY/Nfxb0gm/eUusjZWanzpbrQ4u1fr4x/x4M3zs7+oYc45NjKjcTLfgX9425 B1lGpzstZ9R2+7xq7RdC4GdXddg5pvDqgPntdLJjuYxYfUq7+FKq1P2Qk+qe 06le/UJV6q39+98qni6V61XMemz6s+Aj+CdrQM57bk/yi6uppauLenu7qLY4 Tx03WNgcThkx67H5z4Je8E2vAarMz5Q+/9l5lJeTqWWaWVlUqYzXi/n3YPje 2dE35BifHHMpz31ThklcKYz17RZSPfUntH73p737aqrPLl1fNI98y2GQ3+Q1 +elauTS7nU52LJeRqq82T/4sz6as7CzKzMykzKxMSpfHM6QvXUqrthZ77m2l p69TOlX73OiB+oPG9TEhPDb9WfAR/JOlfvYP+vUjUvo6eH6Dh1FGzHpsdju9 4Jsm5bM/O+ukru6lk4pz0uX23V1e7eux/B4M1zs7+oYc45Njepq0HHNyYaxv t3BqOZ2rPhcPVnf5/V0pv6m5FT5/UPrvK30ilLEsWdTsNadBHx1M1/+eMLud JjuWy0g10FJM6bNTKT09nVJTUyXSU9Xf81zXnZpZ6PlurM/37uukqEUe95t5 5Krn32Y9Nv9Z8Bb8k3WnmbKmSeNOfEtac2Gmri3BfBkx67HZ7fSCb5qUOpLc Sl/nZK+mZpIUO2L/PRiud3b0DTnGJ8ew5v29lGNy/xTLWy2Y+qg8b6laL2oQ YSTJfTj1fWZYV+XvXa3P5x06nS2P2dZPPqP05VC/u81up8mO5TLWUvv56jxS xoTOzj6t21KbB+NEi/wFatZj058Fb8E/RTxG3aje0/3sWiq9nl/fR+GUEbMe m/4s6ATfNLWUZMn3r9z7DwNym6qaR2L/PRiud3b0DTnGIMdkPSXlmGXfjOWt Fkpa+4Sb1CzKyc6mrKwsmUy1bYKl1HlPS82kwuLTVKjO15RK5brQMXC1UK3b yTl4gk6fyJfLuDaOO5ztFNmxXMZa/v18WS2UI9/X9Ox8Kj5dTLmZct9En3l6 zHpsdju94J+mO9e1vqJLc/Lp9OkTtHWp5onyRDNfRsx6bP6zoAi+6dSn9dHm +1ddf5VqynlOZvm1g1fUTWP/PRied3b0DTnGIMfsGyvlmOmfdn+xhHe9dpG+ DKl5Rod3G0Efnc5d4rPNUiq+6v/t56g+4LfWQXahf9u72e1YdiyXsVa9wfwx HvXWU06q932enZlP/j+/zXps/rOgCP55i+eiT/f57KdnF/rNMW+6jJj12PRn QRJ889aAo5I2pPt+X7ozyIkav/5OMf8eDMM7O/qGHGOQY86u1/rIXD8by9tt aw30OkyvE9licn00M9vZsVwOru5Ql0O6zy0Oox4smsx6bPqzQPDPWLw+q8Nz /2JRRsx7bP6zAN+M1dflML1OZCy/B816Z0ffkGMMckxrpZZjyrNiebshC2TH cplIgn9iCr6JKTv6hhxjkGPu3iaa8WkpxxS8FcvbDVkgO5bLRBL8E1PwTUzZ 0TfkGIMcw1rxsJRj1v4gVrcaskh2LJeJJPgnpuCbmLKjb8gxAXLMztekHDP3 3ljdasgi2bFcJpLgn5iCb2LKjr4hxwTIMSWLtD4y3Y2xut2QBbJjuUwkwT8x Bd/ElB19Q44JkGMaj2s55uLOWN1uyALZsVwmkuCfmIJvYsqOviHHBMgx/b3S WpGcYwrfjdXthiyQHctlIgn+iSn4Jqbs6BtyTIAcw0q/X8oxm38ei1sNWSQ7 lstEEvwTU/BNTNnRN+SYIDlmy0tSjll4XyxuNWSR7FguE0nwT0zBNzFlR9+Q Y4LkmKMztT4yru5Y3G7IAtmxXCaS4J+Ygm9iyo6+IccEyTGX8rQc03A0Frcb skB2LJeJJPgnpuCbmLKjb8gxQXJMz8dajilOj8XthiyQHctlIgn+iSn4Jqbs 6BtyTJAcw5r3WSnH7Hgl2lsNWSQ7lstEEvwTU/BNTNnRN+SYEDkm6ykpxyz7 VrS3GrJIdiyXiST4J6bgm5iyo2/IMSFyTMEYKcdM/7S0fiQUd7JjuUwkwT8x Bd/ElB19Q44JkWPKMrU+Ml0N0d5uyALZsVwmkuCfmIJvYsqOviHHhMgx+jFL TSXR3m7IAtmxXCaS4J+Ygm9iyo6+IceEyDFNp3TrLO2K9nZDFsiO5TKRBP/E FHwTU3b0DTkmRI7hta6VHFO2MtrbDVkgO5bLRBL8E1PwTUzZ0TfkmBA55rZL yzE8vy8Ud7JjuUwkwT8xBd/ElB19Q44JkWNYc+6Vcsze0dHcasgi2bFcJpLg n5iCb2LKjr4hx5jIMR88IOWYnF9Fc6shi2THcplIgn9iCr6JKTv6hhxjIses flzKMWueiOJOQ1bJjuUykQT/xBR8E1N29A05xkSO2fILKccsejCaWw1ZJDuW y0QS/BNT8E1M2dE35BgTOWbP61KOmfvZaG41ZJHsWC4TSfBPTME3MWVH35Bj TOSYwunymKV7iO6Ed/2Q9bJjuUwkwT8xBd/ElB19Q44xkWNOL9fGXvc0RXO7 IQtkx3KZSIJ/Ygq+iSk7+oYcYyLHVO/Qcsy1M9HcbsgC2bFcJpLgn5iCb2LK jr4hx5jIMR+f1HLM5b3R3G7IAtmxXCaS4J+Ygm9iyo6+IceYyDGd9VqOKV8T xd2GrJAdy2UiCf6JKfgmpuzoG3KMiRwzcEPLMcfnRnO7IQtkx3KZSIJ/Ygq+ iSk7+oYcYyLHsGZ9RsoxBW9Feqshi2THcplIgn9iCr6JKTv6hhxjMscs/KKU Yz78XaS3GrJIdiyXiST4J6bgm5iyo2/IMSZzzKpHpByT9VSktxqySHYsl4kk +Cem4JuYsqNvyDEmc8ymF6Uck/G1SG81ZJHsWC4TSfBPTME3MWVH35BjTOaY vD9LOWb+30V6qyGLZMdymUiCf2IKvokpO/qGHGMyxxyeoq1NcPdOpLcbskB2 LJeJJPgnpuCbmLKjb8gxJnNMaYY29tp5PdLbDVkgO5bLRBL8E1PwTUzZ0Tfk GJM55sKHWo65fjbS2w1ZIDuWy0QS/BNT8E1M2dE35BiTOabxuJZjavdFersh C2THcplIgn9iCr6JKTv6hhxjMsc4Lms55uz6SG83ZIHsWC4TSfBPTME3MWVH 35BjTOaY/h4txxSlRnq7IQtkx3KZSIJ/Ygq+iSk7+oYcYzLHsGZ8Wsox+8dF cqshi2THcplIgn9iCr6JKTv6hhwTRo5J+4KUY7b/IYI7DVklO5bLRBL8E1Pw TUzZ0TfkmDByzPLvSjlm/bOR3GrIItmxXCaS4J+Ygm9iyo6+IceEkWM2/kTK Mcu+GcmthiySHctlIgn+iSn4Jqbs6BtyTBg5ZucIKcekfj6SWw1ZJDuWy0QS /BNT8E1M2dE35JgwcsyhFCnHvPspok8+ieR2QxbIjuUykQT/xBR8E1N29A05 JowcU5yujb2+2R7J7YYskB3LZSIJ/okp+Cam7OgbckwYOaZys5ZjWs9Hcrsh C2THcplIgn9iCr6JKTv6hhwTRo65ckTLMfWHIrjbkBWyY7lMJME/MQXfxJQd fUOOCSPHtFVpOaZiYyS3G7JAdiyXiST4J6bgm5iyo2/IMWHkmL5OLcecTIvk dkMWyI7lMpEE/8QUfBNTdvQNOSaMHMNjlKZ/SsoxByZEcrshC2THcplIgn9i Cr6JKTv6hhwTRo5hvf/PUo7Z8Uq4txqySHYsl4kk+Cem4JuYsqNvyDFh5phl D0s5ZsPz4d5qyCLZsVwmkuCfmIJvYsqOviHHhJljOL9wjln+7XBvNWSR7Fgu E0nwT0zBNzFlN9/6bn2CHBNujsn9k5RjuH0JigvZrVwmmuCfmIJvYiqefbva eZvu3A0+V/4Vx23acvomzdjTQ8+kt9N/LWxDjgk3xxyeIo9Zuoeovzes9wJZ o3gul1BowT8xBd/EVLz61uu6S9+e00pPu7PJ+O3dNCu/h6513/HbbuEhJ/3v 8de8QI4JM8dc3KWNvb5SGNZ7gaxRvJZLyJzgn5iCb2JqqHw7XttPa0/eoNQD vTQht9uTR/Ti3OKbT6qu+eeFveddnr/904Rr9P/S2mjuvl7kmHBzTO81LccU vRfWe4GsEb5PxRb8E1PwTUxF6pvr1ifUdfOu3+ucS362zEE/XNzuyRV/WNth uP9vMju8MspTC9v8jp+ys5u+O6+Vvjr1uienNHX518dwvc3lFvdz+47W/oQc E2aOYSljr7f+Oqz3AlkjfJ+KLfgnpuCbeLp795OwfGvpuUsflvXR++6swrnj p0sdXvmBNXJ9p1c+eWR+q+GxRm/pUrf5sjun/NydfWIl5JgIcsymn0o5ZuEX w3ovkDXC96nYgn9iCr6Jp7c+7KLvTzhCnTfv0ieffELb3Bnl2Q/aDfuhsPZX ufzaejIKvduDOOO86M43v1rpoD+u7aCJO7oNj8WZ6Lob3xwUCyHHRJBjjs7U 2pZ4rQJoSIXvU7EF/8QUfBNHbb13aGPpTTWL/Dm7k45c7Ff//Y8TrtHphgG/ /bj9RtnmGzNa6O3t3ZbkkGiFHBNBjqkp0HJM7f6w3g8Ue+H7VGzBPzEF3+JD NwbueupTKptv0WF3NjEatzy7oFfNI/80vpEaO257Xn9+cbv6+uOpbX773nZn lovuLMNztMSzkGMiyDE3O7Qcc2xWWO8Hir3wfSq24J+Ygm9Drw0lN/3afbjt xldbz2jb/TzlQ/X1k/UDnte+OavF04YkqpBjIsgxrIX3STlm88/Dej9Q7IXv U7EF/8RUIvrW0HGbfp3p8LTJRKMWg6yhaNTmLs85uN/Kd+a20oKDgecp23mu zy/HVDT5P2PbnHfoRG0/tfbe8fNtzUc3PGOARBZyTIQ5JueXmNc3TpSI36d2 EvwTU3bwjdth3tnR7en/yvmB+40YaX3xTc+8sV+YKGWFb7vzhb6theeYnb6n h15a7qCvz2jxbHesxjjrcBb60pTrNG5bN/Xf9m+veejdFq9cMuZD436zrLr2 27S40Enr3Ne3p7KfSq4M0M2B4G1AdvDNV8gxEeaYE/O1tiVnS1jvCYqt7Fgu E0nwT0zFu2/Ljjk9OcUVpG8H13X41mfcNujHmuazHeceZ79Wh3GmccDvOLsr bvodp+PGXXp0fqu6zWGDeh2eZ+WHi9o9//3Lxk7KLvU/TjSKd98iEXKMcY65 G2KNB6o/rOWYS3lhvScotrJjuUwkwT8xFc++8bjif3hbygpcN8KZ4Ohl/8yw 8vgNenDqdU8dCs+JzxnDKPfsOneTXl7TQSPWdVJxvf+4Ht6Hz8PzwCVv6aJ3 d/fQBYO5aHmeNyXDTN7VE9Z7uuHOTUr/3GgUz75FKuQY/xzD9X4/zmj39KEK qP4eaY0lzjFHpkZy66EYyY7lMpEE/8TUUPvG/T14Djael95XnFl4LLG+foT7 klipUOORuZ6Hcw5fC48TCnf8Mq+NqMyDazTPrVkNtW9WCDnGO8fw3ECPvSfV +9036To1OILk30UPSDkm+0eR3n4oBrJjuUwkwT8xNVS+cVvMD3Xjhbk/iVEm 4L6r3GeE+5dwfxajOfUHWzyumfuyNEeQQ3iOOX6/XH8Uak3oYLJjeUOO8a+P KdTND/SjjPbAn5ltv5dyzPzPRXz/oehlx3KZSIJ/YmqofJuSp60nyG05r2/q 8vQ7sbO4767Sxzg5pyuqY9mxvCHH+OcYlr4dc1+gcfUnF2p9ZLqvRnT/oehl x3KZSIJ/YmqofOMxy1wHM6eg1/b5RRH3GVaeRwXno5vnxY7lDTnGOMdwvy1e E2tvsM9M4wktx1RtC/veQ7GRHctlIgn+iSmrfeN2oYYA/VrjcW58K8Xv99BF l2ddgGDjr8zIjuUNOcY4x5jSrZtE735KyjEH3wlvXyhmsmO5TCTBPzFllW/c R3HzqZueOhfuB8P/hmInO5Y35BjzOYbHYvMaFpvcZex8s/w+Mr4u5ZjV3w/7 3kOxkR3LZSIJ/okpK3zj71eeO0U/zijadhTIW3Ysb8gx5nMMr8elzEmgjvXb m6y1LTWVhH3/oehlx3KZSIJ/YsoK33gOXCW//PvMFtpebu1Y6USUHcsbcoz5 HMN6RJ6LkedE8oj79874tJRj1j0T1nuDYiM7lstEEvwTU1b5xnPYzsrv8fxu hGIvO5Y35JjwckzS+k5PjvnWLN1aBHtHa3UyjcfDen9Q9LJjuUwkwT8xFY1v pVcGaOlRZwyvBjIrO5Y35JjwcszCQ05PjuG5ItU1Qp3XiWb+jZRj1jwZ1vuD opcdy2UiCf5FLx5//N7+Xs86zIM1licS3xzu6+S1GPk7lNvoa9uin2cfCk92 LG/IMeHlGJ4P+uzHt/zXKd03VquTqTsY1nuEopMdy2UiCf5Fp4/q+ulrujWS 759y3XCNwlgrXN/ONd3yWsv5/0y8RtvK0P9lsGXH8oYcE16OCagbbUSzPiPl mFWPRH4cKGzZsVwmkuBfdKprv03/muK9llCVwRqFsVa4vvGctLw+AF/fn7I6 6Fp35GsEQZHLjuUNOSZGOYZ1cKJWJ3N8rrvgdkR3PMiU7FguE0nwz7wCtRnx mrY8H0Tu2T56Z0f3oFxLJL5x3RFfIzR0smN5Q46JYY7p6ySac6+WZXiOvHVP ExV/QFSdS9RwlKj1PFFvszSHHhQT2bFcJpLgX2hd7bxNb+V00eOpbRGtEThw +xOatKubqq7Hrp4mkG8XW27Rm1u7yNmP8UbxKDuWN+SYGOYY1ukVRO99Tssy weCcM++zROn3E614mGjNfxFt/jnRztek/jbHZhGVZhBVbiaqO0B07QxRVwMy kI/sWC4TSfAvsLgf3vsHetU1AplI5lTZekZbn+elFQ46UOUKa55c3pbXaU49 0Ku+pveNs1VexU16ablDPU/awV6jQ0FDLDuWN+SY8HMMjw3getwJud1U02rQ 3/6Tu1LdC4/HTv1Hc5kmXHh8VNp9RMv/g2jjC0R5fyY64r7+08uJLu8laq10 fwn2hHWvRZUdy2UiCf4F1qmGAa9+L6+s64yo78vMvT3qHJ7KWKGPO833T+G6 HGW/sqsDntf0vt3ov0v3T77udfzBat+CwpMdyxtyTPg5hrOLUl45zwQV/+bp biS6ViaNYzqf4/5yWkZ0Yp7Un2bP60Tbfk+U/SOi1Y8RZTxE9P4/a+O4o4Xb uZZ9i2jLL4j2j5fqi3iOm5vtYfkQz7JjuUwkwb/gGrW5i/5fWhuVXBmI6jgN jtuePMJ541V3HjIS9xn2G4tJUlvRv7wjfec9saDN00/H17eJ7tzywNTrNDWv h644MJ46XmXH8oYcE36O4XWWlPEBlv7muOP+3nK2ELVVSdmjegdR+SqpD3HB GKLtLxOtf9adff6daP7fuc28J7yMM+/vpXWh9oyS8s3HxUK2WdmxXCaS4F9w cT+TSPrEBBLPe9XcZVwX881ZLZ688u05rfTsB+2UXap9Hyw42Kv+fuN5tHx9 67x5l/qiXIsZsl52LG/IMeHnGBavw8rl+SdLjOs1eE7t24O9tvzd29I6CVeL pD41J+ZL9T3rnyP64EtE0z9trs8O1wlt/wPRyYXu/HQi7rONHctlIgn+SeL1 EBs6hq4eg/sS69uwmEVHtDl3uQ6G64VGrOuktt478E1Q2dE35JjIcsy4bd30 TxOu0Qu6HMNrYPO6IMoaTGca/euB25136FcrHZ7teK6qpgC/iywR99vprHPf 1N1ERalSf+LM72jz3gTNNl8n2vGq1O+46RTR7f7Bu+4QsmO5TCQlun/cjvP2 dqn/yfPu30eD/vtHFvdx2XG2j97d3UOvb+qiX2c6/NaaVucwJ/gmquzoG3JM ZDmm6+Zdz1hGRYUX+/1+yxiNKzh00eW33ZCvS8/5xnGZ6MKHUp8drr/xtFMF yTbTPyX1u8n5FdH+cUQli4ku73F/GbYO+uXbsVwmkhLZP/4d80x6u/pd8KUp 1+nCIMxhFwslsm8iy46+IcdElmN8xZmG5wPn76IfLmr3jE+8aDBXA2cW7ien HztgNK8l9+njdV9XHr/hGbPgGop2Z26jqtrmzjbvEGU9RTT33uDZRmHhF6W+ y8XpRDX5RB01UpuXRbJjuUwkJbJ/PCec8j3w44z2sMYQDbUS2TeRZUffkGNi k2NYBy+6TH8P8RzdnFXWfHTD8O/6PnUMt2Fxm/SQq6NW6nvDdTDrnpH63cww 2e+Gx6B7+Lw0x86iB4i2/kYau1W7n6jn44jyjh3LpZF4vH9plGNW4lGJ4l8g 8RgiHuszWOs7xkqJ7puosqNvyDGxyzGxFM8hpV9TjdeBMxLPPcV1P9yupW+7 HlTx2PLea0RXjhAdnyPNZzPf5FyAftwj5Zzl3yba8Lw0Jiv/TaLCd91MJzo0 SRo/XvAW0eEpRB8toB3TfiqN5bp+lmjAGfJy/cTX7uqK+W2Jperbb9N/zmv1 jJkdjLVzBlPxVO4g84JvYsqOviHHxGeOUcT1O7vO3aSNpcZjhv64tsNr7qmf LXMM8hUGEeeDhmNE5aultqmdI4h2jZTgefs2/kSaKyfWcwS+585Bmf8p9fPh /jvcn5lzz5Gp7tzzPlHZSmmu5E0vaufn/j5cv8TzCA5BH59g4nbFr07V5hjj +Tn04jEuXK/HcxnlnJHW2OnuM860PGcAj6UbssxroHgsd1BowTcxZUffkGPi O8eE0k+XOrzan36/2nhtSu6Xw+1YQ9LPJpR4rXBuV+L5AQ9PlsZFcQbhtRp4 zuLZf+vdPsVzBM7+TPjz5YRTJ8RrRfC8hLxOxO6/SnVBPMfOpTyi5tPSvD5h zOtuJJ7rnftGnawf8Mwbz3VwvnPFs19f09XLzSnwn+udx7359h036iuao5ub njPv6C1dhu2ggz1eRsRyF4k4jyat77TNHCuJ4pvdZEffkGPEzjEsnn+K10uZ 7X7GBVp7hee34ucXz3H13KJ2yjpp3C8nbnX3jjSuSi9+5ru6KW3am1K2OL9F qmfZ8YrUL3n5d4kWPSjVuRjlnoX3SfU1yjw74a4hwfPxcJ/mNU8S5f5JWhei fK2UdcoyiY7OdIeM/5bg6/PR8mM3/PLH9R7/epLjtf2eeRezA9TJsee+xzFa L2PnOf/tTjd497fh+dG4PZPX3Fjr/ozsc3+urH7uilruwtGW0zfpvhSpTo3r TMNZ2yhelQi+2VF29A05RvwcE0r8m9/3+TV/v/Eabtx+dbpxIK7aHULJtG/8 7OA1p7g/cZ/BvOz8d55DkNvAuP/x2h8QLX6Ibsz9Z2qb+vfUNOUfqHbKF6nG jVGuyUj5C736zkp6YcJ2+tGEnXRr6v/y3mbVI0QVG4nuSGUg/7z/GHyjOYdY PO9QIPFYuTb33zmD8Nzzl1tuec0JoIizzXtu3zMKnZ556f+w1r/ujj8Xvtdk 1L+cP1PcTycWfVPtWu4U8drP+nqwTafie15Js7K7b3aVHX1DjrF/jmHxc4f7 2UzJ66EfZbTTsRr/eex88w7/Lud5sXzF83bVtt32tEkU1fXT+uKbhr/ZuX3C 6HkaTHxd/Kzl4/OzO1A7GD+ve+Q+IIF847k5eC6vl9d0eNrbeJ1f3/oHM/pT VofXffnBnFqikkVSf2POO6se9dTlvPzOGq/tNk/6Jd2d81ka/s4GWp4yklrd WciTZ7huaPVjdH3bWFq9aS8dOnaaaj7uGvT2BqP2Ix5zx/dJmReAx8kZ1R2k H3aqf+d5BP57Y+TtJXYudyyew18pT0cvx8/8kdHK7r7ZVXb0DTkmMXKMGR02 mMuP26t8da7plt92FU3+vp6o7Ve/v3k+c55XJ9S86/wM1R/3dwH6+yjbfS+1 jb4/4YhhexrXF/heJ/cl8RVnLe6fEkh/zu70OsZ35hr3A566s5Men9dE/5bS 5NkueVOHp01IXVN0+p+Dt1Mt+BdpvdB9/yPNm1xTQNR+UVpjlOcY5LYqXlur qSToPYyFeD0fzrVGvrJ4biP9Pfny1OuG21U23/Jkx2DtKHYvd/zeuc23NR7m TYih7O6bXWVH35BjkGMU8VgWXu92T2W/5/c214cb9QM1mrs416DeZusZ//6n 3OYRSDynDq9Np9+e+0X6ip8LPP5Yv91Ig+24Toez038tbKOn09sN66H4ef3K OumZnLKz23A9viPu98vjgbh/Cuclfv/BxPeP++6y3vqwS6236Op136Nz2UR5 f5HqcPT9l8Ml42ueMedRrVvedUXqrxyB+N6yv9P39HjqvIzuP+tV+d7+o/v9 P+jOOrx2s68SvdyJKvgmpuzoG3IMcky4aum5S9vK+mhd8U1PHQ7Xsdw1eP7z mBme24af5dy2w887/Tq73A7B9RW+4t/vm0/dpNXu7MDtHL7irMGvc1+O32R2 0P8Zf4WWHYtg3hiS2tIenq2NB+L2EaP3Eom478iX5fHShuPIuI6iq4Ho4i6p f/LWX0trdJqZV9B3fkEe25X9Y2ls+4EJ0vpZSp9jXuuz9TxRTxPRlUJpDsPF D2n783w/1blqv52oxdmo6D3q35VMX0xp9sqbvMagr7jczXDnIV5zjOdDahzC tRKjEV83192J1LcsGuH7UkzZ0TfkGOSYoRLXcfCz7amFbV75JlxNnTot7H44 enE/mkfltT0ZzmexkOPGXU/9A9cdce4zLc43nDkajrqzyDppbYiPT0qZp7tR alv64IHYjzfnuQs5C3GfH85D+W9IfZ55zDnnIm7r4rmAKjZJ8w7W7pPmB+J1 Q1sr3XlsJ9Gmn0rZSD4m94/OSptFs7LLPGOgeI4bX3G5e2Cqd/1ack6AeQld 3VJf6b3J0poXd4e+rYb7GWWeuKHWEf51U3zPqRgr4ftSTNnRN+QY5JihENd5 fHeelB2+PafVsD3HrGLhG4/34fYnXuc3VvUxirivcjQ5K6AajxMdSpHm2+G5 j5d9U5oLeXqo+px7pHYtHhfOcxJG074VDnPulfoAcQZb9g1prsI1T9KpqQ/T E1NO0z+Mb1JzTMbKHCk/8byFPK8Qr9W1/ll67Z2VNH/iWKqa8mXpmLy+Beet qx8Zj0EbBHF7pT6DvbOjO+afoXgUvi/FlB19Q45BjhkK6edu49+y0ShWvt3o v2uf5w+PL++sI2ouleYYPJ8jzVXMdRk3fdq4bvURnV0vZ6FvSTmD59zh3BEy E/nAY7G4LodzBZ+f15QwmZP6pv5/dGryw5SZ8gpdnHK/39+vTPmC+pm5b3wt FUx6xm8b18zP0u1FDxGte1paq5TPf2y2VI9Ud0DqNz0Q27mTuE2Tr4lz+SGD dlC7Ct+XYsqOviHHIMcMhcZv71bHufA8+dEIvlksbrvhdat4vQZu22qvJrpe LmWV+kPuQrqb6MKHUh+bWwZtcv290jh1nmuQ644+HC6tCbH+WaLV36emaf9E lPF1aQ5l7uvD+cmgj9DpOc/QY1Mr3J8bpc9NMx3LGE36+Q0Xp/w3/cP4j+n/ vl1Kv5ywid6ZONOTjwzb0FY/LtVHcZsZjw3jeaWDiNd64DknfcX9oHjOQEvq 3OJYKHdiyo6+IccgxwyVeJ2EQPMPhyP4JrYC+sf5iTOQ87qUn+Sx2/urXHTf pOv021UdUntkb7NU3+TOI++k53m18fzr+Dr6ZKp/3c/hyU/SipTXqGDS01Q5 5WvUMfVe6W9cD8Vj37luasXD9MrkDfTIhCL6Wsplz5irQPNHJqJQ7sSUHX1D jkGOEV3wTWxF4h/PDeTs968b4THyvAYVz2/DY+1fWNJOdNsltXHxWC1uPzs2 m0a/t9sr73zj7TLDtq5nJhR4bffE7NpYvGVbCOVOTNnRN+QY5BjRBd/E1lD4 99Jy7/kWn09155MT86SxWjz2ncexb3ieZi7cSH+euY3GTJxPsyZOoGOT5bVD eS5CG6yRFI1Q7sSUHX1DjkGOEV3wTWwNlX88vy6vZ8Vz1uw3mLfaSzz+fd5n vetruC8PrwHKfWtu22e9AbNCuRNTdvQNOQY5RnTBN7EljH/cD/jD35HfuunM rM9Ic+ecXiGtQxpInHduRd8nLB4kjG+Ql+zoG3IMcozogm9iSzj/eq9Jc9qs fy7wuHQeu87rT5zfIq2NxfMJ8vgoHofFfYm5n47g7VLC+QZ5ZEffkGOQY0QX fBNbQvvH8/Rc2EqU+ydpTr5w5tpZ/l1p7Hqs9MndQZ0LUGjfElh29A05BjlG dME3sWUb/7h+hddo4Hn3sp4imvk3WmbhtRp4jkGer4b71fjmGZ6z7/BkovI1 0ryFLeek+Xo+MTG3Eq8VenwOUdoXpPoent+Y64wslm18SzDZ0TfkGOQY0QXf xJZt/bszIK2Rxf2Aud5GEc8nzOtJmFkPlPPP/L8jWvQg0erHpDU9c/8oZZUj 7vu2/WXj4yh5pqPGeG7CcMR9erifszJOS5ZtfbO57OgbcgxyjOiCb2IrYf3j NT95juM1T0rrThn1Hw4HnhN5zX8Z/41zzXufl/JQ5nekdRu2vCStIcHrn3Md Evf54XmZed0uxyWitirpb/pxWpyrCsZ4slHC+ia47OgbcgxyjOiCb2IL/sm6 4/5u7KiVcgT3ueG1HA5NkvoL5/xSyii8via3H3nWrHLnnunuXJHzK6neR1Hj CaldKxZrewYi/X7KmvaHIbtVUOSyY3lDjkGOEV3wTWzBvwjFfWduB5n35uNi aRz48blEB96W+uZw5uF1rVY9QrT4Iamvjr4fjxFrnpDGXXGfHV4nXf83rqtZ 94w0Hqtq25CtOQ6Zlx3LG3IMcozogm9iC/7FgbgPDPcNvn5W6mfM48JPLiRq u+C9HWen4nRpvhzD3HMP0fL/kHJNwzHhx5bbUXYsb8gxyDGiC76JLfgnoLob ae+056U+x9wvh/vNGOUabgPjtjHHZanfc0sFUcVGqZ9z+dqhfhcJKTuWN+QY 5BjRBd/EFvwTU16+8RzF9Yekepjl3zbus+yXddzbXNw1dG8gQWXH8oYcgxwj uuCb2IJ/Yiqobzc7iEozpLFRwfrecPvUtTODd9GQLcsbcgxyjOiCb2IL/okp 0761X5Talriu5uwGouvlUp9gpX6G+xoHW5MKiqnsWN6QY5BjRBd8E1vwT0xF 7VvxB7q5b/6dqL83NhcGBZUdyxtyDHKM6IJvYgv+iamY+LY3Wcsyq79P5GyJ /phQUNmxvCHHIMeILvgmtuCfmIqJbzyOe+NPtCyT+nmiK4XRHxcKKDuWN+QY 5BjRBd/EFvwTUzHzjdd/2v4H73FNR2di7hmLZMfyhhyDHCO64JvYgn9iKua+ la/ynlt404vB5yuGIpIdyxtyDHKM6IJvYgv+iSlLfON58hY94N1nxtUd+/Mk sOxY3pBjkGNEF3wTW/BPTFnmW3+P97rdvDam87o150pA2bG8Iccgx4gu+Ca2 4J+YstQ3Xu9py0talln4RaLOeuvOl0CyY3lDjkGOEV3wTWzBPzFluW88lonX 6FayTPr9RDfbrT1nAsiO5Q05BjlGdME3sQX/xNSg+bZ/vJZlVj2Kvr9Ryo7l DTkGOUZ0wTexBf/E1KD6tv1lLcvk/BJjsqOQHcsbcgxyjOiCb2IL/ompQfXt zgDR2h9oWWb/uME7t81kx/KGHIMcI7rgm9iCf2Jq0H1zdREt/oqWZU4tG9zz 20R2LG/IMcgxogu+iS34J6aGxLeuK0TvfU6b97d2/+Bfg+CyY3lDjkGOEV3w TWzBPzE1ZL41lWjz/s65l6itamiuQ1DZsbwhxyDHiC74Jrbgn5gaUt/O57gv 4B5tbhmMxzYtO5Y35BjkGNEF38QW/BNTQ+4bryWprl/wmDR3HhRSQ+6bBUKO QY4RXfBNbME/MRUXvunXyd47eqivRgjFhW8xFnIMcozogm9iC/6Jqbjwjcdj r3pEyzKX9wz1FcW94sK3GAs5BjlGdME3sQX/xFTc+MZjmGb/rZRj5n+OyNky 1FcU14ob32Io5BjkGNEF38QW/BNTceXbuWytTmb9c5jvN4jiyrcYCTkGOUZ0 wTexBf/EVNz5tu33WpY5mTbUVxO3ijvfYiDkGOQY0QXfxBb8E1Nx51t/rzQG m3PM9E8R7XmdqKthqK8q7hR3vsVAyDHIMaILvokt+Cem4tK3j09K8/wq9TL8 /zymCXPlqYpL36IUcgxyjOiCb2IL/ompuPXtahHRhue1LMPM+DRR44mhvrK4 UNz6FoWQY5BjRBd8E1vwT0zFvW/Xy4lyfqXN+zv3s0Tt1UN9VUOuuPctAiHH IMeILvgmtuCfmBLGt/K1Wr1M2heInNeH+oqGVML4FoaQY5BjRBd8E1vwT0wJ 5Zt+DYNl35L6BCeohPLNpJBjkGNEF3wTW/BPTAnnW96ftSzDcwBfKxvqKxoS CeebCSHHIMeILvgmtuCfmBLOt7t3iDa+oOv/ew/R1l8TOS4P9ZUNqoTzzYSQ Y5BjRBd8E1vwT0wJ6dutm9K8MtN9xmZv/jlR+Tqivs6hvkLLJaRvIYQcgxwj uuCb2IJ/Ykpo3zrr5fl/7/Een83/nnsvUfaPiK4UEt0J8bzi9Q8Eyz5C+xZA yDHIMaILvokt+CembOFbS4U0Tx6PyfbKMzIz/4Yo6ymiw5PdD6PdRDfaiG67 3P+fR7RrJFHq56VtPnpfarcSQLbwzUfIMcgxogu+iS34J6Zs5RtnkCtHiJY9 7N3mZMT0Txu/vvy7RK2Vgc/RdoFo91+JTi2LfB3Lno8j208nW/kmCzkGOUZ0 wTexBf/ElK1966wjqtgkjXHKeMig/UmeI5jbnz54wDvj5L/p3ncjUXOp1OZ0 4UOitT/w3nfVo8Ezj9/11BOte1o6fpRrYNrRN+QY5BjRBd/EFvwTUwnlG883 U3+I6Nhsot3/TVSdSzRwQ/obtzMdeNt7XSczcL3PgQlE3Y1EdwaMz8v1REWp UtuVft/sHxPd7IjorXh8azoltZdx3VCkirROyQIhxyDHiC74Jrbgn5iCbz66 doZo+beN6264/82+sVIdDP/XKPPwNosfIlr9faJNLxLtfE1q59L3QZ7/d9q/ 3/9notp9RK4u85nCeZ3Kp33T+xrXPRNeexXnJ+4blPE19/s5H9m9irGQY5Bj RBd8E1vwT0zBtwC61Sf1H67aRnR8LlH5Kuk1va6flfrTmK27WfQAUcNRd2bp lteM8vk756L5n3Nv96D7uP8h1bVwFuI+zHtGER2cKOWn2Z8xPv6ce6X1Gz65 G/h98d+4/kbfJ5rricrXWHo7zQg5BjlGdME3sQX/xBR8i1KcC2oKiE6vICqc LvUB3vIS0ZoniTK+TpT6j1LuODSJ6Ha/976nl/u3NYXDpp9K8xnveMXnb/cQ zfuslJtWP0a08SdEuX8iKhhDtOLhwMfjbXhunkjEGa84XRoLFqGQY5BjRBd8 E1vwT0zBtyGW45I0d99HC9xZJ0Xqk8x1NRuelzJIxr8Tpd0n1Z8o7VgZD1HW tJe9j8PjyXn8uNkMxMfk/kHcX+i9z3m3c61/zn0dfyE6PoeocjNRUwnRzXbj 6797W6rf4bzG+3ObWu+1iG4FcgxyjOiCb2IL/okp+CaYuN7j7h1j33hcVcli osNTpHohzkPcNrXsm0QL/oVo1mek8Vn8d30bGa8d7jsWywiuV+K+Pjz34LFZ RKUZRB98yX+79Pulfs9hCjkGOUZ0wTexBf/EFHwTUxH7FqjvjDKmitd24KwS aE7BYPU7vK/yb85NHTVhvyfkGOQYkQXfxBb8E1PwTUwNim8DTqmvc/UOqd2L +xrz/Dfc9qTkFe6XzP1ilDHn3A9Z+Ru3c53PMd3nBjkGOUZ0wTexBf/EFHwT U0PuW3+P1G+Gs46vuN1KX1fD7VncxsVzCQaaY4eQY5BjxBd8E1vwT0zBNzEV 977xWlWz/9a//Ynnztk/nqij1m8X5BjkGNEF38QW/BNT8E1MCeEbjzO/uEvq F+yXae4hWvWIND9O7h+J9o5GjkGOEV7wTWzBPzEF38SUcL5xpuG1rtY8EbCv MHIMcozogm9iC/6JKfgmpoT2ra2KKP8NotWPS3MFpn2BaO69yDHIMcILvokt +Cem4JuYsqNvyDHIMaILvokt+Cem4JuYsqNvyDHIMaILvokt+Cem4JuYsqNv yDHIMaILvokt+Cem4JuYsqNvyDHIMaILvokt+Cem4JuYsqNvyDHIMaILvokt +Cem4JuYsqNvyDHeOQYAAAAA4oEcM/QeAAAAACAyEj3HQBAEQRAkvpBjIAiC IAgSVcgxEARBEASJKuQYCIIgCIJEVaLmGAAAAACAQCDHAAAAAEBUkGMAAAAA ICrIMQAAAAAQFeQYAAAAAIgKcgwAAAAARAU5BgAAAACighwDAAAAAFFBjgEA AACAqCDHAAAAAEBUkGMAAAAAICrIMQAAAAAQFeQYAAAAAIgKcgwAAAAARAU5 BgAAAACighwDAAAAAFFBjgEAAACAqCDHAAAAAEBUkGMAAEA82tvbac+ePZSZ mUlLly4FIO7gzyZ/RvmzamVZQI4BAACxaGtrQ34BwsCfVf7MWlUekGMAAEAs +DcuPx8OHDhAfX19YX13Q9BgiT+b/Bnlzyp/Zq0qD8gxAAAgFkpdDDIMFO/i zyh/VleuXGlZeUCOAQAAsVDq67u6uqi1tZVaWloAiDv4s8mfUeXzalV5QI4B AACxUJ4L169fByDuQY4BAACgBzkGiARyDAAAAD3IMUAkkGMAAADoQY4BIoEc AwAAQA9yDBAJ5BgAAAB6kGOASCDHAAAA0IMcA0QCOQYAAIAe5blw7do1AOIe 5BgAAAB6kGOASCDHAAAA0IMcA0QCOQYAAIAe5BggEsgxAAAA9CDHSFR/lEdp k0bRS889R88xL71EI8bNpA37TtHVOLg+IIEcAwAAQA9yTAUtSfoODRs2LDD/ +TYdrLnut299+UFau3It5X10MQ7eR2KAHAMAAECP8lxobm5OQBppY9J9al75 zxEzaPuhIqqoqKDSonzKSBmuZZkHxlNJo/f++2Y87Pnbv03cEwfvJTFAjgEA AKAnkXPM1Y+Wqjnl9dUnDbep/2gVfVXZZsNZr78dnvsTz+tPzdk/5O8lUUCO AQAAoCeRc0zNvllyu9FMuhxku40jh3nXuzRepqrLFbRx9L96Xr9/VBZVXK7y 1ONcbjQ+Rl1FKRVs307b3eQVFFBRaUXA8zW6j1VWUUWN6r/P0CH3PoeOHqKC gkNUdrlxyO/dUIEcAwAAQE9C55jD5nKMJ1eUlVFVnZQflPYkI/5tok/dTOMZ yhj9lPH2z4yn/IqrPue7TPMe5b8/Rvl1dZQ7/beG+76+KDHrgJBjAAAA6Enk HFN/+D0tFyw/Ynq/yrxlNDZlLD2n5opfUMr0FBo7diwtL6jUtq0rpGRd9ngm aRItXrGC5o7V9bsZ9hxtKdNnmcuU9qyUY5KSnpa3eYzGzM2gFYvfpZe+oh3v qTmJ1y8HOQYAAIAe5bnQ1NSUgJylSY/q6jkeSaJFWwqo5NwlU/sfTVP6xxw2 /PvuSf9XzSHLDlZ5/a3hzE56WTnv0wvpkvq3i3KOkfjyz+bT6Qb9cS9S9qT/ Uv++tKQxDu7j4IEcAwAAQE9i5xg3dcdp0rMGbT5feYxeS5lHW/KLqC7AvoeU fr7T9vn/vX6/mlP+Z3Ol4f6NpUvk832VVqt5RJ9jRtLxBqNzn6d58jbfHbNj 6O/hIIIcAwAAQE/C5xgPDVRycDPNTXmNHv2KQaYZ9gtaXXjZb79gOebyIbnv zbBkKg543jrK+LmSdcrl17QcM3zRsYDXXJHzpty3ZwZdGPL7N3ggxwAAANCD HOPPpXMllL99NY37+Ze88swHhfVe25nKMU/P17UZ+XNIbpv6jnoMLcfMPuif nRSay9ZJ48G/Ox85JoYgxwAAgFgoz4WPP/4YGHBubzo9pmSZFzOoVve3g3OU HFPgt9+lgzOlfYav9NrHF/9jXKQFco6ZuvdC4Gur20cvyXVF+2ubhvw+DRbI MQAAAPQgx4TmzIa/SJnku/PovO51UznGvc/FIMcOlmNmHbgccL+GErlvzdPB j283kGMAAADoSdwcc5EWy31TZu0JnBeYC9vfMMwkwXJMXeF8uT3q5SD1JeU0 XR4vNWFnlXpdSo55atrugNdUsuZPav+Y80Gu3W4gxwAAANCTuDnmCq0ZIa+t 9LO0oHUaee++YFwfM/cHAXPMxx+fpNFye9RvU48aHvdC3hR1vNK60w3y61qO 4bllPjxrkIGajqrHfnH2oTi4l4MHcgwAAAA9iZtjuJ5lvNqH94Hh82j/2Trv bWrLacO7v1G3eXVVkff++XIO+XIyHb7onzcKF/9a3fevHxR49ZMp2T5LXbdp 2OvZuv30OYaP/TJtKr6k/v3K+cOUov79Mdp5PnH6xjDIMQAAAPQoz4WrV68m JPlzf+w1JunBZ35Pr48ZQ6//7kXvsdfDF1O1z75XTq/w2uaRRx6htzKLdNtU 0/LXvqibk+ZReuaZZ+gZ/dx7D4yjYzVXvfZZ8Iy8/vbPntGOzfs984zX+d7a VDLk92+wQY4BAACgJ9FzDFO8cwn9/pEvG6+B9OCzNHvdAaoPsO+JTbPoWd2c M/8xtcBnm3rK/+Atre5Fx6tz1lOl3zG1HPPe4YtUvO5t/2v68suUuf/8kN+3 oQA5BgAAgB7kGI3qylN0/PB+2r9f4vipyoD5xZeamhqqqa8Psk0NVVZWUnV1 NZWfKqfq+kDbaTlmyp5L0mv1Ne5rq6Ty8lN0qtz8NdkR5BgAAAB6kGPiDV2O 2ZuYdS7BQI4BAACgBzkm3kCOCQZyDAAAAD3Kc6GxsRHEBRdoziNyjtl9MQ6u J75AjgEAAKAHOSb+qKuqoLKyCqqLg2uJN5BjAAAA6EGOASKBHAMAAEAPcgwQ CeQYAAAAepBjgEggxwAAANCDHANEAjkGAACAHuW50NDQAEDcgxwDAABAD3IM EAnkGAAAAHqQY4BIIMcAAADQgxwDRAI5BgAAgB7kGCASyDEAAAD0IMcAkUCO AQAAoAc5BogEcgwAAAA9mZmZnucCfwdfuXIFgLiFP6P8WV25cqVl5QE5BgAA xGLPnj2eZ8OOHTuQZUDcwp9N/ozyZ5U/s1aVB+QYAAAQi/b2drVOBoB4hz+r /Jm1qjwgxwAAgHi0tbV5fuOuWLFiyJ9TABjBn03+jPJn1cqygBwDAAAAAFFB jgEAAACAqCDHAAAAAEBUkGMAAAAAICrIMQAAAAAQFeQYAAAAAIgKcgwAAAAA RAU5BgAAAACighwDAAAAAFFBjgEAAACAqCDHAAAAAEBUkGMAAAAAICrIMQAA AAAQlWhzTH9//5C/BwAAAAAkHpxBIs0xdXV1nv1u3Lgx5O8DAAAAAIkHZxDO IrW1tZ5/h6OmpibPvg6HY8jfBwAAAAASD84gnEWuXr1Kt2/fDivHdHV1efZt bGwc8vcBAAAAgMSDM4hSp3Lnzp2wcgxvX1NT49m/p6dnyN8LAAAAABIHzh6c QTiLuFwu+uSTT8LKMSylPof7yvAxhvo9AQAAAMD+cOZQ+um2tbWF3aak6O7d u9TQ0OA5Dv8XWQYAAAAAVsJZQ8keV65c8YxZiqQuRhEfk/sJK/UyaGMCAAAA gBVwxlDqYTh79PX1eepUohUfW8lGSt9fbnPi8VCYXwYAAAAAkcAZgrMEZwql T69SD8MZJty+vcHEeai9vV3t+wsAAAAAEEs4Y3B/GM43saiHMRL3teHcxGO5 lfYmAAAAAIBI4CzBmYKzBfeN4ZwRTX8Ys+JzcH0Pn2+o66UAAAAAIC6cJThT DEZ+gSAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAI giAIsqv+f8HE0kI= "], {{0, 750}, {562, 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag[ "Byte", ColorSpace -> "RGB", Interleaving -> True, Magnification -> 0.5], Selectable->False], DefaultBaseStyle->"ImageGraphics", ImageSize->Magnification[0.5], ImageSizeRaw->{562, 750}, PlotRange->{{0, 562}, {0, 750}}]\)

The result returned by NetTrain was the net that generalized best to points in the validation set, as measured by validation loss. This penalizes overfitting, as the noise present in the training data is uncorrelated with the noise present in the validation set.

In[9]:=
Click for copyable input
Show[Plot[net2[x], {x, -3, 3}], plot]
Out[9]=

Another way to tackle overfitting is to use L2 regularization, which implicitly associates a loss with nonzero parameters in the net during training. This can be specified with a Method option to NetTrain.

In[10]:=
Click for copyable input
net3 = NetTrain[net, data, Method -> {"ADAM", "L2Regularization" -> 0.01}]
Out[10]=

L2 regularization penalizes "complex" nets, as measured by the magnitudes of their parameters, which tends to reduce overfitting.

In[11]:=
Click for copyable input
Show[Plot[net3[x], {x, -3, 3}], plot]
Out[11]=

Related Examples

de es fr ja ko pt-br ru zh