Wolfram Language

Knowledgebase Expansion

Model the Composition of the Universe over Time

Explore how the composition of the universe changes over time, according to the standard ΛCDM (Lambda cold dark matter) model.

Compute the values of the density ratios of dark energy, matter, and radiation at different ages of the universe, ranging from 1000 years to years.

In[1]:=
Click for copyable input
ages = Quantity[10^Range[3, 11, 0.2], "Years"];
In[2]:=
Click for copyable input
darkenergy = Table[UniverseModelData[t, "DarkEnergyDensityRatio"], {t, ages}]; matter = Table[ UniverseModelData[t, "MatterEnergyDensityRatio"], {t, ages}]; radiation = Table[UniverseModelData[t, "RadiationEnergyDensityRatio"], {t, ages}];

Represent the evolution in time for the three components, denoting the current age of the universe with a vertical bar. Currently the largest component is dark energy.

show complete Wolfram Language input
In[3]:=
Click for copyable input
data = { Transpose[{ages, darkenergy}], Transpose[{ages, darkenergy + matter}], Transpose[{ages, darkenergy + matter + radiation}] }; ListLogLinearPlot[data, PlotRange -> All, Joined -> True, Filling -> {1 -> Axis, 2 -> {1}, 3 -> {2}}, FrameLabel -> Automatic, GridLines -> {{13.8*10^9}, None}, PlotRangePadding -> 0, Frame -> True, PlotLegends -> {"DarkEnergyDensity", "MatterEnergyDensity", "RadiationEnergyDensity"}]
Out[3]=

Discover when the background radiation temperature would have been between 273 and 373 K (the "Habitable Epoch" of the universe).

In[4]:=
Click for copyable input
period = t /. FindRoot[ Quantity[#, "Kelvins"] == UniverseModelData[t, "RadiationTemperature"], {t, Quantity[1, "Megayears"]}, Evaluated -> False] & /@ {273, 373}
Out[4]=
In[5]:=
Click for copyable input
Grid[{#, UniverseModelData[#, "RadiationTemperature"]} & /@ Through[{Min, Mean, Max}[period]], Dividers -> All]
Out[5]=

Related Examples

de es fr ja ko pt-br ru zh