Compute a Mellin Transform
Compute the Mellin transform of a function using MellinTransform.
In[1]:=

MellinTransform[E^(-a x), x, s]
Out[1]=

Plot the result for different values of .
In[2]:=

MellinTransform[E^(-a x), x, s];
Plot[Table[% , {a, 1, 2, 1/4}] // Evaluate, {s, 0, 4}]
Out[2]=

Generate conditions for the validity of the result.
In[3]:=

MellinTransform[E^(-a x), x, s, GenerateConditions -> True]
Out[3]=

Compute a multivariate Mellin transform.
In[4]:=

MellinTransform[Cos[x - y^2], {x, y}, {s, t}]
Out[4]=

Create a table of basic Mellin transforms.
show complete Wolfram Language input
Out[5]//TraditionalForm=
