Solve a SIAM Challenge Problem
The integral depends on the parameter α. Find the value of that lies between and and maximizes the integral. The given integral can be regarded as a Mellin convolution of two functions.
In[1]:=
f[x_] := x (2 - x)^\[Alpha] UnitBox[(x - 1)/2]
In[2]:=
g[x_] := Sin[x]
Compute the Mellin convolution of f[x] and g[x].
In[3]:=
(mc = MellinConvolve[f[x], g[x], x, \[Alpha]]) // TraditionalForm
Out[3]//TraditionalForm=
Compare with the result given by Integrate.
In[4]:=
Integrate[(2 - x)^\[Alpha] Sin[\[Alpha]/x], {x, 0, 2},
Assumptions -> \[Alpha] > 0] // TraditionalForm
Out[4]//TraditionalForm=
Plot the integral as a function of .
In[5]:=
Plot[mc // Evaluate, {\[Alpha], 0, 4.99}, PlotStyle -> Red]
Out[5]=
Compute the argument that maximizes the integral in using FindArgMax.
In[6]:=
N[FindArgMax[mc, {\[Alpha], 1}, WorkingPrecision -> 100][[1]], 20]
Out[6]=