Solve a SIAM Challenge Problem
The integral depends on the parameter α. Find the value of
that lies between
and
and maximizes the integral. The given integral can be regarded as a Mellin convolution of two functions.
In[1]:=
![Click for copyable input](assets.en/solve-a-siam-challenge-problem/In_17.png)
f[x_] := x (2 - x)^\[Alpha] UnitBox[(x - 1)/2]
In[2]:=
![Click for copyable input](assets.en/solve-a-siam-challenge-problem/In_18.png)
g[x_] := Sin[x]
Compute the Mellin convolution of f[x] and g[x].
In[3]:=
![Click for copyable input](assets.en/solve-a-siam-challenge-problem/In_19.png)
(mc = MellinConvolve[f[x], g[x], x, \[Alpha]]) // TraditionalForm
Out[3]//TraditionalForm=
![](assets.en/solve-a-siam-challenge-problem/O_17.png)
Compare with the result given by Integrate.
In[4]:=
![Click for copyable input](assets.en/solve-a-siam-challenge-problem/In_20.png)
Integrate[(2 - x)^\[Alpha] Sin[\[Alpha]/x], {x, 0, 2},
Assumptions -> \[Alpha] > 0] // TraditionalForm
Out[4]//TraditionalForm=
![](assets.en/solve-a-siam-challenge-problem/O_18.png)
Plot the integral as a function of .
In[5]:=
![Click for copyable input](assets.en/solve-a-siam-challenge-problem/In_21.png)
Plot[mc // Evaluate, {\[Alpha], 0, 4.99}, PlotStyle -> Red]
Out[5]=
![](assets.en/solve-a-siam-challenge-problem/O_19.png)
Compute the argument that maximizes the integral in using FindArgMax.
In[6]:=
![Click for copyable input](assets.en/solve-a-siam-challenge-problem/In_22.png)
N[FindArgMax[mc, {\[Alpha], 1}, WorkingPrecision -> 100][[1]], 20]
Out[6]=
![](assets.en/solve-a-siam-challenge-problem/O_20.png)