Wolfram Language

Random Matrices

Brownian Motion on CUE

Brownian motion on the manifold of the unitary matrices can be constructed by infinitesimal generators from Gaussian unitary ensemble. The stationary distribution of this Brownian motion is then identical to the distribution of CUE.

In[1]:=
Click for copyable input
mats = RandomVariate[GaussianUnitaryMatrixDistribution[0.1, 2], 100000]; mats = Table[MatrixExp[I mat], {mat, mats}];

Generate a Brownian path with initial point sampled from CUE.

In[2]:=
Click for copyable input
initial = RandomVariate[CircularUnitaryMatrixDistribution[2]]; res = FoldList[#2.#1 &, initial, mats];

Compute the phases of the eigenvalues and compare them with the PDF of the eigenvalues of matrices from CUE.

In[3]:=
Click for copyable input
phases = RandomSample /@ Arg[Eigenvalues /@ res];
show complete Wolfram Language input
In[4]:=
Click for copyable input
Show[ ContourPlot[ 1/(8 Pi^2) Abs[Exp[I \[Phi]1] - Exp[I \[Phi]2]]^2, {\[Phi]1, -Pi, Pi}, {\[Phi]2, -Pi, Pi}], ListPlot[Take[phases, {1, -1, 10}], ImageSize -> Medium, PlotStyle -> Black, PlotTheme -> "Detailed"], ImageSize -> Medium]
Out[4]=

Related Examples

de es fr ja ko pt-br ru zh