Wolfram Language

Extended Probability & Statistics

Log Returns of Stock Prices

Stock prices modeled with geometric Brownian motion (in the classical BlackScholes model) are assumed to be normally distributed in their log returns. Here, this assumption is examined with the stock prices of five companies: Google, Microsoft, Facebook, Apple, and Intel.

Retrieve the stock prices in 2015 with FinancialData.

In[1]:=
Click for copyable input
symbols = {"GOOGL", "MSFT", "FB", "AAPL", "INTC"}; prices = Table[ FinancialData[stock, {{2015, 1, 1}, {2015, 12, 31}}], {stock, symbols}];

Compute the log returns.

In[2]:=
Click for copyable input
logreturn = Minus[Differences[Log[prices[[All, All, 2]]], {0, 1}]];

Filter the log returns with an ARCHProcess of order 1.

In[3]:=
Click for copyable input
fdata = Table[ {\[Kappa]1, \[Alpha]1} = {\[Kappa], \[Alpha]} /. FindProcessParameters[lr, ARCHProcess[\[Kappa], {\[Alpha]}]]; MovingMap[Last[#]/Sqrt[\[Kappa]1 + \[Alpha]1 First[#]^2] &, lr, 2] , {lr, logreturn}]; fdata = Transpose[fdata];

Compare the filtered data from each stock to the normal distribution with QuantilePlot. For all five companies, the tails deviate from normal.

show complete Wolfram Language input
In[4]:=
Click for copyable input
MapThread[ QuantilePlot[#1, PlotLabel -> #2, PlotTheme -> "Detailed"] &, {Transpose[fdata], symbols}]
Out[4]=

Perform a multivariate normality test with BaringhausHenzeTest (BHEP). The normality assumption is clearly rejected.

In[5]:=
Click for copyable input
htd = BaringhausHenzeTest[fdata, "HypothesisTestData"];
In[6]:=
Click for copyable input
htd["TestDataTable"]
Out[6]=
In[7]:=
Click for copyable input
htd["ShortTestConclusion"]
Out[7]=

Fit the filtered data with MultinormalDistribution and MultivariateTDistribution.

In[8]:=
Click for copyable input
multiN = EstimatedDistribution[fdata, MultinormalDistribution[Array[x, 5], Array[s, {5, 5}]]]
Out[8]=
In[9]:=
Click for copyable input
multiT = EstimatedDistribution[fdata, MultivariateTDistribution[Array[x, 5], Array[s, {5, 5}], nu]]
Out[9]=

Compute the AIC for the two distributions. The model of MultivariateTDistribution has a smaller value.

In[10]:=
Click for copyable input
aic[k_, dist_, data_] := 2 k - 2 LogLikelihood[dist, data]
In[11]:=
Click for copyable input
aic[5 + 15, multiN, fdata]
Out[11]=
In[12]:=
Click for copyable input
aic[5 + 15 + 1, multiT, fdata]
Out[12]=

Related Examples

de es fr ja ko pt-br ru zh