Wolfram Language

Extended Probability & Statistics

Estimation of Irregularly Sampled Random Processes

Generate a realization of an irregularly sampled OrnsteinUhlenbeckProcess.

In[1]:=
Click for copyable input
sample = TimeSeriesResample[ RandomFunction[ OrnsteinUhlenbeckProcess[0, .1, .3], {0, 100, .1}], {Sort[ RandomReal[100, 1000]]}]
Out[1]=
show complete Wolfram Language input
In[2]:=
Click for copyable input
ListLinePlot[sample, Filling -> Axis, ImageSize -> Medium, PlotTheme -> "Detailed"]
Out[2]=

Estimate the process parameters from irregularly sampled data.

In[3]:=
Click for copyable input
EstimatedProcess[sample, OrnsteinUhlenbeckProcess[\[Mu], \[Sigma], \[Theta]]]
Out[3]=

Retrieve the stock prices for GE since January 1, 2013, and convert them to TemporalData .

In[4]:=
Click for copyable input
price = TemporalData[FinancialData["GE", "Jan. 1, 2013"]]
Out[4]=
show complete Wolfram Language input
In[5]:=
Click for copyable input
DateListPlot[price, Filling -> Axis, ImageSize -> Medium, PlotTheme -> "Detailed"]
Out[5]=

The time stamp of the stock price data is nonuniform.

In[6]:=
Click for copyable input
MinMax[Differences[price["Times"]]]
Out[6]=

Assume the log price satisfies FractionalBrownianMotionProcess and estimate the parameters.

In[7]:=
Click for copyable input
EstimatedProcess[Log[price], FractionalBrownianMotionProcess[\[Mu], \[Sigma], h]]
Out[7]=

Related Examples

de es fr ja ko pt-br ru zh